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Remark. The Part II course Probability & Measure is listed as desirable for this course.
This is because we will be dealing with random variables, and being familiar with some
probability theory will be handy. There are essentially three places where we use measure-
theoretic probability:

❼ The convergence theorems will be used to justify statements such as limn E(Zn) =
E(limn Zn).

❼ The notions of measurability and sigma-algebra to model what information is available
in a probabilistic setting

❼ The monotone class theorem, which says that in order to prove an identity involving
expected values, it is usually sufficient check a special case.

However, this course is self-contained, so attending Probability & Measure is absolutely not

necessary.

1 Standing assumptions and notation

Financial market consists of d risky assets.

❼ No dividends.

❼ Infinitely divisibility.

❼ No bid-ask spread.

❼ No price impact.

❼ No transaction costs

❼ No short selling constraints

The price of asset i at time t will be denoted Si

t
. We will let St = (S1

t
, . . . , Sd

t
)⊤ be the

column vector of prices. In addition, market participants can borrow or lend at a risk-free
interest rate r, assumed constant.
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2 The one-period set-up

Introduce an investor. Let θi be the number of shares of asset i that the investor buys at time
t = 0. (When θi < 0 then the investor shorts |θi| shares of the asset.) Let θ = (θ1, . . . , θd)⊤

be the column vector of portfolio weights. In addition, let θ0 be the amount of money the
investor puts in the bank. The investor’s wealth at time t is denoted Xt.

❼ Initial wealth X0 = θ0 + θ⊤S0.

❼ Time-1 wealth X1 = θ0(1 + r) + θ⊤S1.

❼ X1 = (1 + r)X0 + θ⊤[S1 − (1 + r)S0]

We think of the interest rate r and the initial asset prices S0 as known at time 0. We will
model the time-1 asset prices S1 as a random vector. Moreover, we make the (unrealistically)
assumption that we are completely certain that we know the distribution of S1. In particular,
given the initial wealth X0 and the portfolio θ, we will model the time-1 wealth X1 as a
random variable with a known distribution.

3 The mean-variance portfolio problem

Mean-variance portfolio problem (Markowitz 1952) Given initial wealth X0 and target
mean m, find the portfolio θ to minimise Var(X1) subject to E(X1) ≥ m.

We will assume the random vector S1 is square-integrable and adopt the notation

❼ µ = E(S1). We will assume µ ̸= (1 + r)S0.

❼ V = Cov(S1) = E[(S1 − µ)(S1 − µ)⊤]. Recall that V is automatically symmetric and
non-negative definite. We will assume that V is positive definite. In particular, the
inverse V −1 exists.

In this notation, we have

❼ E(X1) = (1 + r)X0 + θ⊤[µ− (1 + r)S0] and

❼ Var(X1) = θ⊤V θ

so the mean-variance portfolio problem is to find θ such that

minimise θ⊤V θ subject to θ⊤[µ− (1 + r)S0] ≥ m− (1 + r)X0

Theorem (Mean-variance optimal portfolio). The unique optimal solution to the mean-

variance portfolio problem is

θ = λ V −1[µ− (1 + r)S0]

where

λ =
(m− (1 + r)X0)

+

[µ− (1 + r)S0]⊤V −1[µ− (1 + r)S0]
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Notation. Here and throughout the course we will use the common notation x+ = max{x, 0}
for a real number x.

Proof. Next lecture.

3



Stochastic Financial Models 2

Michael Tehranchi

9 October 2023

1 Mean-variance efficiency

To solve the mean-variance portfolio problem, we will use the following lemma

Lemma. If θ⊤a = b then

θ⊤V θ ≥
b2

a⊤V −1a

with equality if and only if

θ = λ V −1a

where

λ =
b

a⊤V −1a
.

Proof of lemma. Since V is non-negative definite we have

θ⊤V θ =θ⊤V θ + 2λ(b− θ⊤a)

=(θ − λ V −1a)⊤V (θ − λ V −1a)

+ 2λb− λ2 a⊤V −1a

≥2λb− λ2 a⊤V −1a =
b2

a⊤V −1a

and since V is positive definite there is equality only if

θ = λ V −1a

Remark. This proof is secretly using the Lagrangian technique from IB Optimisation or
Variational Principles. The constant λ could be thought of as a Lagrange multiplier.

Remark. The lemma is equivalent to

(θ⊤a)2 ≤ (θ⊤V θ)(a⊤V −1a).

This is just the Cauchy–Schwarz inequality applied to the vectors V 1/2θ and V −1/2a.
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By applying the lemma with a = µ− (1 + r)S0 and b = E(X1)− (1 + r)X0, we see that

Var(X1) ≥
(E(X1)− (1 + r)X0)

2

[µ− (1 + r)S0]⊤V −1[µ− (1 + r)S0]

with equality if and only if
θ = λ V −1[µ− (1 + r)S0]

where

λ =
E(X1)− (1 + r)X0

[µ− (1 + r)S0]⊤V −1[µ− (1 + r)S0]
.

When the initial wealthX0 is fixed, we can plot the set of all possible values of (E(X1),Var(X1))
as we vary the portfolio θ.

Definition. Given X0, the mean-variance efficient frontier is the lower boundary of the set
of possible values of (E(X1),Var(X1)); i.e. the set {m, (minE(X1)=m Var(X1)) : m ∈ R}.

Remark. Note that we have shown that the mean-variance efficient frontier is a parabola.

Proof of mean-variance optimal portfolio. If m > (1 + r)X0, then it is optimal to take
E(X1) = m with portfolio θ = λV −1, since minimised variance increases with E(X1).

However, if m ≤ (1+ r)X0, then the minimised variance decreases with E(X1) and hence
it is optimal to take E(X1) = (1 + r)X0 ≥ m, with portfolio θ = 0.

Definition. Given X0, we say that a portfolio is mean-variance efficient iff it is the optimal
solution to a mean-variance portfolio problem for some target mean m.
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Theorem (Mutual fund theorem). A portfolio θ is mean-variance efficient if and only there

exists a scalar λ ≥ 0 such that

θ = λ V −1[µ− (1 + r)S0]

Proof. We are given an initial wealth X0.
Suppose we are given a target mean m. Then the optimal solution of the mean-variance

portfolio problem if of the correct form with

λ =
(m− (1 + r)X0)

+

[µ− (1 + r)S0]⊤V −1[µ− (1 + r)S0]
≥ 0

On the other hand, suppose that we are given λ ≥ 0. Then the given portfolio is the
optimal solution of the mean-variance portfolio problem for target mean

m = (1 + r)X0 + λ[µ− (1 + r)S0]
⊤V −1[µ− (1 + r)S0].

2 Capital Asset Pricing Model

Theorem (Linear regression coefficients). Let X and Y be two-square integrable random

variables with Var(X) > 0. The unique constants a and b such that

Y = a+ bX + Z

where E(Z) = 0 and Cov(X,Z) = 0 are given by

b =
Cov(X, Y )

Var(X)
and a = E(Y )− bE(X).

Proof. Let Z = Y − a− bX and note

E(Z) = E(Y )− a− bE(X)

Cov(X,Z) = Cov(X, Y )− bVar(X)

The given a and b are the unique solution to the system of equations E(Z) = 0 and
Cov(X,Z) = 0.

Definition. The portfolio
θMar = V −1[µ− (1 + r)S0]

is called the market portfolio.

Remark. The name market portfolio is explained below.
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Definition. Given initial wealth X0 > 0, the excess return Rex of a portfolio θ is defined by

Rex =
X1

X0

− (1 + r) =
1

X0

θ⊤[S1 − (1 + r)S0]

Let Rex
Mar be the excess return of the market portfolio θMar.

Theorem (Alpha is zero). Fix X0 > 0 and a portfolio θ. Suppose α and β are such that

Rex = α + βRex
Mar + ε

where E(ε) = 0 and Cov(Rex
Mar, ε) = 0. Then α = 0.

Proof. (next time) Note

Cov(Rex, Rex
Mar) =

1

X2
0

θ⊤Cov[S1 − (1 + r)S0]θMar

=
1

X2
0

θ⊤[µ− (1 + r)S0]

=
1

X0

E(Rex)

and hence

Var(Rex
Mar) = Cov(Rex

Mar, R
ex
Mar)

=
1

X0

E(Rex
Mar).

By linear regression, we have

β =
Cov(Rex, Rex

Mar)

Var(Rex
Mar)

=
E(Rex)

E(Rex
Mar)

and
α = E(Rex)− βE(Rex

Mar) = 0.
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1 CAPM, continued

Now let’s model the entire market. Assumptions:

❼ There is a total of ni > 0 shares of asset i = 1, . . . , d, and let n = (n1, . . . , nd)
⊤.

❼ There are K agents in the market, and agent k holds portfolio θk.

❼ Total supply equals total demand so that

∑

k

θk = n.

❼ Each agent’s portfolio is mean-variance efficient

By the mutual fund theorem, for each k we have

θk = λkθMar

where λk ≥ 0. Hence,
n = Λ θMar

where Λ =
∑

k
λk. Since n ̸= 0, it follows Λ > 0. That is the say, in this model, the entire

market is just some positive scalar multiple of the market portfolio (explaining the name).
A prediction of the CAPM is that when the excess returns of a portfolio are statistically

regressed against the excess returns of a broad market index (such as the FTSE or S&P)
then you should find α = 0.

Remark. Markowitz and Sharpe shared the 1990 Nobel Prize in Economics for studying
mean-variance efficiency and the CAPM.
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2 Expected utility hypothesis

Up to now, given two random payouts X and Y we have implicitly assumed that an agent
prefers X over Y if either

❼ E(X) > E(Y ) and Var(X) = Var(Y ), or

❼ E(X) = E(Y ) and Var(X) < Var(Y )

This is rather crude. Here is a historical example that illustrates one of the issues.
Aside: historical origin of expected utility hypothesis (not lectured). Consider the St
Petersburg paradox : You and I play a game. I toss a coin repeatedly until it comes up heads.
If toss the coin a total of n times, I will pay you 2n pounds. How much would you pay me to
play this game? This problem was invented by Nicolaus Bernoulli in 1713. The issue is that
according to N Bernoulli’s intuition, the answer should be the expected value of the payout∑

n
2n × 2−n = ∞, but he thought no sensible person would pay more than 20 pounds. His

cousin Daniel Bernoulli proposed in 1738 that people don’t care about the expected payout
per se, but instead the relevant quantity is the expected utility of the payout.

Definition. The expected utility hypothesis says that each agent has a function U (called
the utility function) such that the agent prefers random payout X to Y if and only if

E[U(X)] > E[U(Y )]

In the case E[U(X)] = E[U(Y )] the agent is said to be indifferent between X and Y .

Remark. If Ũ(x) = a + b U(x) with b > 0, then Ũ gives rise to the same expected utility
preferences as U .

Remark. In 1947, von Neumann–Morgenstern axioms derived a short list of properties of
an agent’s preferences which are equivalent to the assumption that the agent’s preferences
are derived from expected utility.

3 Risk-aversion and concavity

Once we’ve assumed the expected utility hypothesis, there are two additional properties we
will assume of the agent’s utility function:

❼ (Strictly) increasing. x > y implies U(x) > U(y).

❼ (Strictly) concave.

U(px+ (1− p)y) > p U(x) + (1− p)U(y)

for any x ̸= y and 0 < p < 1.
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Remark. Note that if X ≥ Y almost surely, then X ⪰ Y . Furthermore, if P(X > Y ) > 0
then X ≻ Y .

Remark. Recall Jensen’s inequality:

U(E[X]) ≥ E[U(X)]

whenever the expectations are defined. Hence E(X) ⪰ X for any random payout X. If X is
not constant, then E(X) ≻ X.
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1 Properties of concave functions

We will nearly always assume our agent’s utility function U is strictly increasing and strictly
concave. If U is differentiable (always assumed), the gradient U ′ is called the marginal utility.

❼ U ′(x) > 0 measures how much the utility increases at x

❼ U ′′(x) < 0 measures the concavity of the utility at x

Definition. The (Arrow–Pratt) coefficient of absolute risk aversion is

−
U ′′(x)

U ′(x)

The (Arrow–Pratt) coefficient of relative risk aversion for x > 0 is

−x
U ′′(x)

U ′(x)

Examples

❼ exponential or CARA. U(x) = −e−γx with γ > 0 the constant coefficient of absolute
risk aversion

❼ power or CRRA. U(x) = 1
1−R

x1−R, x > 0, with R > 0, R ̸= 1, modelling the constant
coefficient of relative risk aversion

❼ logarithmic. U(x) = log x, x > 0 with constant coefficient of relative risk aversion
R = 1.

❼ risk-neutral. U(x) = x so the coefficient of risk aversion is zero. Note that this function
is concave, but not strictly concave, so we won’t use it as a utility function!

Remark. To be really technically accurate, we should talk about the domain of a concave
function, i.e. the set where the function is finite-valued.
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Theorem (Concave functions are continuous, and their graphs lie above their tangents).
Let U be concave. Then U is continuous. If U is differentiable, then for any x, y we have

U(y) ≤ U(x) + U ′(x)(y − x).

Proof. Fix x and 0 < ε < ℓ. We have
ε

ℓ
(U(x)− U(x− ℓ)) ≥ U(x)− U(x− ε)

≥ U(x+ ε)− U(x)

≥
ε

ℓ
(U(x+ ℓ)− U(x))

This is proven by looking each inequality one at a time, and rearranging the definition of
concavity. For instance, note

x− ε =
ε

ℓ
(x− ε) + (1−

ε

ℓ
)x

so by concavity

U(x− ε) ≥
ε

ℓ
U(x− ℓ) + (1−

ε

ℓ
)U(x)

This is equivalent to the first inequality.
Sending ε → 0 shows continuity. Now assuming differentiability, dividing by ε and taking

the limit yields
U(x)− U(x− ℓ) ≥ ℓ U ′(x) ≥ U(x+ ℓ)− U(x)

as claimed by letting y = x+ ℓ or x− ℓ.

Theorem (Increasing concave functions are unbounded on the left). Suppose U is increasing

and concave, but not constant. Then U(x) → −∞ as x → ∞.

Proof. Let x < a < b, where U(a) < U(b). Then using a = ( b−a
b−x)

x+ (a−x
b−x

)b in the definition
yields

U(x) ≤ U(a) +
x− a

b− a
(U(b)− U(a))

from which the conclusion follows.

2 Optimal investment and marginal utility

In this section we assume that U is strictly increasing, concave and differentiable.

Theorem (Marginal utility pricing). Suppose U is suitably nice1, and let θ∗ maximise the

expected utility E[U(X1)] where X1 = (1 + r)X0 + θ⊤[S1 − (1 + r)S0]. Then

S0 =
E[U ′(X∗

1 )S1]

(1 + r)E[U ′(X∗

1 )]

1That is, it satisfies a technical condition that allows the formal calculation to go through, but the
condition is uninteresting for the main focus of this course. In this case, we assume U(X1) is integrable for
all portfolios θ then the formal calculation is justified by the dominated convergence theorem of Probability
& Measure.

2
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where X∗

1 = (1 + r)X0 + (θ∗)⊤[S1 − (1 + r)S0] is the optimal time-1 wealth.

Proof. Let
f(θ) = E{U

(

(1 + r)X0 + θ⊤[S1 − (1 + r)S0]
)

}

We can differentiate inside the expectation yielding

Df(θ) = E{U ′
(

X1

)

[S1 − (1 + r)S0]}

where X1 = (1 + r)X0 + θ⊤[S1 − (1 + r)S0]. Since by calculus, at the maximising portfolio
θ∗ the gradient vanishes Df(θ∗) = 0, the conclusion follows upon rearrangement.
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1 Contingent claims

In the context of a one-period model a contingent claim is just another name for an asset
with a random payout at time 1.

❼ interest rate r and d risky assets with time t price vector St, for t ∈ {0, 1}. These are
thought of as ‘fundamental’ assets.

❼ We introduce a (d+ 1)st risky asset with time-1 payout Y .

❼ Often Y = g(S1) for some function g, but not always.

❼ The problem is to find a ‘reasonable’ time-0 price for the claim

Example

Definition. A call option is the right, but not the obligation, to buy a certain asset at a
certain price (called the strike) at a certain time in the future (the maturity date).

❼ If S1 > K it is rational to receive the payout S1 −K.

❼ If S1 ≤ K it is rational to let the call expire unexercised.

❼ The payout is (S1 −K)+

1



❼ notation: x+ = max{x, 0} is the positive part of the real number x.

2 Indifference pricing

Consider an investor with initial wealth X0 and concave, increasing utility function U . She
is offered to buy a contingent claim with payout Y . How much should she pay?

❼ Let
X = {(1 + r)X0 + θ⊤[S1 − (1 + r)S0] : θ ∈ R

d}

be the set of time-1 wealths attainable from trading the original market.

❼ The agent would prefer to buy one share of the contingent claim with time-1 payout
Y for time-0 price π iff there exists an X∗ ∈ X such that

E[U(X∗ + Y − (1 + r)π)] ≥ E[U(X)]

for all X ∈ X .

Assumption. In the examples from this course, we will assume that the data of the problem
is such that any given utility maximisation problem has a solution.

Definition. An indifference (or reservation ) price of the claim with payout Y is any solution
π of

max
X∈X

E[U(X + Y − (1 + r)π)] = max
X∈X

E[U(X)]

3 Properties of indifference prices

Theorem. Under our assumptions1, indifference prices exist and are unique.

1For the technically minded, we will assume the random variable U(X + Y + x) is integrable for all
X ∈ X , x ∈ R, and possible payouts Y , and that for x, Y there exists X∗ ∈ X such that E[U(X∗+Y +x)] =
maxX∈X E[U(X + Y + x)]
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Proof. Next time.

Notation. For a fixed initial wealth X0 and utility function U , we will let π(Y ) denote the
(unique) indifference price of a contingent claim with payout Y .

Theorem (Indifference prices are increasing). If Y0 ≤ Y1 almost surely with P(Y0 < Y1) > 0
then

π(Y0) < π(Y1)

Proof. Next time.

Theorem (Indifference prices are concave). Given random variable Y0, Y1 and 0 < p < 1,
we have

π(pY1 + (1− p)Y0) ≥ p π(Y1) + (1− p)π(Y0)

Proof. Next time.

Definition. The marginal utility price of a claim with payout Y is

π0(Y ) =
E[U ′(X∗)Y ]

(1 + r)E[U ′(X∗)]
.

where X∗ ∈ X is such that E[U(X∗)] = maxX∈X E[U(X)].

Note that our first marginal utility pricing theorem (from last time) says

π0(a+ b⊤S1) =
a

1 + r
+ b⊤S0

for any a ∈ R and b ∈ R
d.

Theorem (Marginal utility price is larger than indifference price).

π(Y ) ≤ π0(Y )

Proof. Next time.

Theorem (Convergence of indifference prices to marginal utility prices).

lim
ε→0

π(εY )

ε
= π0(Y )

Proof. Next time.
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1 Proofs of indifference pricing properties

To prove the properties listed last time, it is convenient to define for a any suitable random
variable Z the indirect utility

V (Z) = max
X∈X

E[U(X + Z)]

In this notation, π is an indifference price for the claim with payout Y iff

V (Y − (1 + r)π) = V (0).

We prove two lemmata:

Lemma (Indirect utility is strictly increasing). If Z0 ≤ Z1 almost surely with P(Z0 < Z1) > 0
then

V (Z1) > V (Z0)

Proof of lemma. Let X i be the maximiser for the two problems, i.e.

V (Zi) = E[U(X i + Zi)]

for i = 0, 1. Then

V (Z1) = E[U(X1 + Z1)]

≥ E[U(X0 + Z1)]

> E[U(X0 + Z0)]

= V (Z0)

Lemma (Indirect utility is concave). Given random variable Z0, Z1 and 0 < p < 1. Then

V (pZ1 + (1− p)Z0) ≥ pV (Z1) + (1− p)V (Z0)

1



Proof of lemma. Let X i be the maximiser for the two problems for i = 0, 1.
Now noting that pX1 + (1− p)X0 ∈ X yields

pV (Z1) + (1− p)V (Z0) = E[pU(X1 + Z1) + (1− p)U(X0 + Z0)]

≤ E[U(pX1 + (1− p)X0 + pZ1 + (1− p)Z0)]

≤ max
X∈X

E[U(X + pZ1 + (1− p)Z0)]

= V (pZ1 + (1− p)Z0)

Proof of existence and uniqueness of indifference prices. By our assumption of the existence
of a maximiser, we have V (0) = E[U(X∗)] for some X∗ ∈ X . In particular we have that
U(−∞) < V (0) < U(∞).

For fixed Y , we will show that the function x 7→ V (Y + x) is a bijection from (−∞,∞)
to (U(−∞), U(∞)). This would imply that there is a unique solution x to V (Y +x) = V (0).
The indifference price is uniquely defined by π(Y ) = − 1

1+r
x.

Note the function x 7→ V (Y + x) is strictly increasing, and hence an injection. To
complete the proof, we need only show its range is the interval (U(−∞), U(∞)).

The function is concave, hence continuous, so its range is an interval. Since strictly
increasing concave functions are unbounded from the left, we have

V (Y + x) ↓ −∞ = U(−∞) as x ↓ −∞.

Also
V (Y + x) ≥ E[U(X∗ + Y + x)] ↑ U(+∞) as x ↑ +∞

by a form of the monotone convergence theorem from Probability & Measure (this step is
not examinable). This shows x 7→ V (Y + x) is a bijection.

Proof that indifference prices are increasing. Suppose Y0 ≤ Y1 a.s. and P(Y0 < Y1) > 0.
Note

V (Y1 − (1 + r)π(Y1)) = V (0)

= V (Y0 − (1 + r)π(Y0))

< V (Y1 − (1 + r)π(Y0)).

Since x 7→ V (Y1 + x) is strictly increasing, we have −(1 + r)π(Y1) < −(1 + r)π(Y0) as
desired.

Proof of concavity of indifference prices. Given Y0, Y1 and 0 < p < 1, let Yp = pY1+(1−p)Y0

and πi = π(Yi) for i = 0, p, 1. By definition of indifference price and concavity of V we have

V (Yp − (1 + r)πp) =V (0)

=V (Y1 − (1 + r)π1)

=V (Y0 − (1 + r)π0)

=pV (Y1 − (1 + r)π1) + (1− p)V (Y0 − (1 + r)π0)

≤V (Yp − (1 + r)(pπ1 + (1− p)π0))

2



Since x 7→ V (Yp+x) is strictly increasing, we have −(1+r)πp ≤ −(1+r)(pπ1+(1−p)π0).

Proof that marginal utility price is larger than indifference price. Let X∗ be the optimiser
without the claim, and X1 be the optimiser with the claim. Using the supporting line
property of the concave function U we have

V (0) = V (Y − (1 + r)π(Y ))

= E[U(X1 + Y − (1 + r)π(Y ))]

≤ E[U(X∗)] + E[U ′(X∗)(X1 −X∗) + Y − (1 + r)π(Y ))]

= V (0) + E[U ′(X∗)Y ]− E[U ′(X∗)](1 + r)π(Y ))

where we have used the fact that

E[U ′(X∗)(X1 −X∗) = (θ1 − θ∗)⊤E[U ′(X∗)(S1 − (1 + r)S0)] = 0.

The conclusion follows upon rearranging.
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1 Proof of the convergence of indifference to marginal

utility price

Fix Y and let

πt =
π(tY )

t
and p = supt>0 πt. Example sheet: t 7→ πt decreasing. [Hint: use π(0) = 0 and concavity]
Hence πt ↑ p as t ↓ 0. We must show p = π0(Y ).

From last time πt ≤ π0(Y ) for all t > 0 so p ≤ π0(Y ). It remains to show the reverse
inequality.

Now by definition of X∗ ∈ X as maximiser of E[U(X)] we have

0 =
1

t
[V (tY − (1 + r)tπt)− V (0)]

≥ E

[

U(X∗ + tY − (1 + r)tπt)− U(X∗)

t

]

≥ E

[

U(X∗ + tY − (1 + r)tp)− U(X∗)

t

]

since p ≥ πt

→ E{U ′(X∗)[Y − (1 + r)p]}

(by the dominated convergence theorem from Probability & Measure) Rearranging yields
p ≥ π0(Y ).

2 Risk neutral measures

❼ Given an probability space (Ω,F ,P)

❼ Let Z be a positive random variable such that EP(Z) = 1.

❼ We can define a probability new measure Q by the formula

Q(A) = EP(Z✶A)

for any event A.

1



❼ By measure theory, EQ(X) = EP(ZX) for any Q-integrable random variable X.

❼ Notation Z = dQ
dP

❼
dQ
dP

is called the density or likelihood ratio of Q with respect to P.

❼ Important point: Q(A) = 0 if and only if P(A) = 0 by the pigeon-hole principle.

Definition. Let P and Q be probability measures defined on the same measurable space
(Ω,F). The measures are said to be equivalent if they have the property that Q(A) = 0 if
and only if P(A) = 0.

Theorem (Radon–Nikodym theorem). Let P and Q be probability measures defined on the

same measurable space (Ω,F) . There exists a P-a.s. positive random variable Z such that

Q(A) = EP(Z✶A)

for any event A if and only if P and Q are equivalent.

Remark. We don’t need this theorem, but is only stated for mathematical context.

Example

❼ Let Ω = {ω1, ω2, . . .}

❼ P{ωi} = pi > 0 for all i

❼ Q{ωi} = qi > 0 for all i

❼ Z(ωi) = qi/pi for all i.

❼ Then Z = dQ
dP
.

Example

❼ Let X be defined on (Ω,F ,P), and µ, λ positive constants.

❼ X ∼ exp(λ) under P.

❼ Let Z = µ

λ
e(λ−µ)X . Note Z is positive and

EP(Z) =

∫

∞

0

µ

λ
e(λ−µ)xλe−λxdx =

∫

∞

0

µe−µxdx = 1.

❼ Let Q have density Z with respect to P. Then for any bounded function f we have

EQ[f(X)] = EP[Zf(X)]

=

∫

∞

0

µ

λ
e(λ−µ)xf(x)λe−λxdx

=

∫

∞

0

f(x)µe−µxdx

2



❼ That is, the distribution of X under Q is exp(µ)

Now consider the one-period model set-up defined on a probability space (Ω,F ,P).

❼ interest rate r

❼ d risky assets with time t price vector St.

Definition. A risk-neutral measure is any probability measure Q, equivalent to P, such that

S0 =
1

1 + r
EQ(S1)

The probability measure P is called the objective or statistical measure.

Theorem (Marginal utility pricing 2). Consider the problem of maximising EP[U(X)] over

X ∈ X = {(1 + r)X0 + θ⊤(S1 − (1 + r)S0) : θ ∈ Rd}

where U is strictly increasing, and assume there exists a maximiser X∗ ∈ X . Define the

equivalent probability measure Q with density dQ
dP

∝ U ′(X∗). Then Q is risk-neutral.

Proof. Let

Z =
U ′(X∗)

EP[U ′(X∗)]

Note that Z > 0 and EP(Z) = 1. By assumption dQ
dP

= Z. But we already know from the
first marginal utility pricing theorem (Lecture 4) that

1

1 + r
EQ(S1) =

EP[U ′(X∗)S1]

(1 + r)E[U ′(X∗)]
= S0.

3
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1 Arbitrage

Recall the set-up

❼ one risk-free asset with interest rate r

❼ d risky assets with time-t price St for t ∈ {0, 1}

Definition. An arbitrage is a portfolio ϕ ∈ Rd such that

ϕ⊤[S1 − (1 + r)S0] ≥ 0 almost surely

and
P
(
ϕ⊤[S1 − (1 + r)S0] > 0

)
> 0.

Arbitrage and utility maximisation

Fix initial wealth X0 and strictly increasing utility function U , consider the problem

maximise E[U(X)] over X ∈ X

where
X = {(1 + r)X0 + θ⊤[S1 − (1 + r)S0] : θ ∈ Rd}

❼ Suppose ϕ is an arbitrage.

❼ Given X ∈ X consider
X∗ = X + ϕ⊤[S1 − (1 + r)S0]

❼ Note X∗ ∈ X also, but
U(X∗) ≥ U(X) almost surely

and
P
(
U(X∗) > U(X)

)
> 0

❼ Hence
E[U(X∗)] > E[U(X)]

1



❼ Since X ∈ X was arbitrary, there cannot be a maximiser!

Why arbitrages are bad for theory

❼ Suppose ϕ is an arbitrage.

❼ From above, an investor would prefer the portfolio (n+ 1)ϕ to nϕ for any n.

❼ As n gets large, the assumption that an agent can trade with no price impact becomes
more and more unrealistic.

Comments

❼ The definition of arbitrage does not depend on the agent’s initial wealth X0 or utility
function U .

❼ However, it does depend on the agent’s beliefs through the probability measure P.

❼ Agents with equivalent beliefs will agree on the set of arbitrage portfolios.

2 Fundamental theorem of asset pricing

Things we know so far

❼ If there exists an optimal solution to a utility maximisation problem, then there exists
risk-neutral measure.

❼ If there exists an optimal solution to a utility maximisation problem, then there exists
no arbitrage.

Theorem (FTAP). A market model has no arbitrage if and only if there exists a risk-neutral

measure.

Proof of the easy direction. Let ϕ be such that

P
(
ϕ⊤[S1 − (1 + r)S0] ≥ 0

)
= 1.

Suppose there exists a risk-neutral measure Q. By equivalence

Q
(
ϕ⊤[S1 − (1 + r)S0] ≥ 0

)
= 1.

However

EQ{ϕ⊤[S1 − (1 + r)S0]} = ϕ⊤EQ[S1 − (1 + r)S0]

= 0

by the definition of risk-neutrality.

2



By the pigeon-hole principle

Q
(
ϕ⊤[S1 − (1 + r)S0] > 0

)
= 0.

Again by equivalence
P
(
ϕ⊤[S1 − (1 + r)S0] > 0

)
= 0.

Hence ϕ is not an arbitrage.
Proof of the harder direction of the FTAP. Assume that there is no arbitrage. For easier

notation, let ξ = S1 − (1 + r)S0.
We also assume without loss that

E[e−θ⊤ξ] < ∞

for all θ ∈ Rd. (Otherwise, we replace P with the equivalent measure P̃ with density

dP̃

dP
∝ e−∥ξ∥2

and note by equivalence there is no P̃-arbitrage.)
Consider the problem of maximising E[U(θ⊤ξ)] and U(x) = −e−x. We will show that the

assumption of no arbitrage implies that there exists an optimal solution.
Let (θn)n be a sequence such that

E[U(θ⊤n ξ)] → sup{E[U(θ⊤ξ)] : θ ∈ Rd}

Case: (θn)n is bounded. Then by the Bolzano–Weierstrass theorem, there exists a con-
vergent subsequence. By passing to that subsequence, we assume θn → θ0.

By continuity
E[U(θ⊤n ξ)] → E[U(θ⊤

0
ξ)]

Hence θ0 is a maximiser. We are done since U ′(θ⊤
0
ξ) is proportional to the density of a

risk-neutral measure.
Case: every maximising sequence (θn)n is unbounded. (next time)

3
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1 Harder direction of FTAP continued

We will assume without loss that the random variables {ξ1, . . . , ξd} are linearly independent.
(Otherwise, we could consider a sub-market where the asset prices are linearly independent.
Since there is no arbitrage in the given market, there is no arbitrage in the sub-market.)

We may assume ∥θn∥ ↑ ∞. Let

ϕn =
θn

∥θn∥

Note (ϕn)n is bounded, so by the Bolzona–Weierstrass theorem, there exists a convergent
subsequence. By passing to that subsequence, we assume ϕn → ϕ0. Note ∥ϕ0∥ = 1.

We will show that ϕ⊤
0 ξ ≥ 0 almost surely. By no arbitrage, this will imply that ϕ⊤

0 ξ = 0
almost surely. And by linear independence, this would show that ϕ0 = 0, contradicting
∥ϕ0∥ = 1.

Now to show ϕ⊤ξ ≥ 0 almost surely, that is P(ϕ⊤
0 ξ < 0) = 0. By the continuity, it is

enough to show P(ϕ⊤
0 ξ < −ε, ∥ξ∥ < r) = 0 for every ε > 0, r > 0. So fix ε, r. We can pick

N such that ∥ϕn − ϕ0∥ ≤ ε
2r

for n ≥ N . Note on the event {ϕ⊤
0 ξ < −ε, ∥ξ∥ < r} for n ≥ N

we have

ϕ⊤
n ξ ≤ ∥ϕn − ϕ0∥∥ξ∥+ ϕ⊤

0 ξ

≤ −
ε

2

by Cauchy–Schwarz.
Since θ = 0 is not optimal we have for n ≥ N that

1 = F (0) ≥ F (θ)

= E[e−θ⊤
n
ξ]

≥ E[(e−ϕ⊤
n
ξ)∥θn∥✶{ϕ⊤

0
ξ<−ε,∥ξ∥<r}]

≥ e
1

2
∥θn∥εP(ϕ⊤

0 ξ < −ε, ∥ξ∥ < r)

so P(ϕ⊤
0 ξ < −ε, ∥ξ∥ < r) ≤ e−

1

2
∥θn∥ε → 0

1



Remark on examining. The details of the above proof should individually be accessible to
someone in Part II, and could be examined. However, the proof in its entirety is bit longer
than usual bookwork questions for this course, so don’t worry too much about memorising
it.

2 No-arbitrage pricing

Given a market of tradable assets and a contingent claim with payout Y , how can you assign
an initial price π? Possible solutions

❼ Given U and X0, find the indifference price.

❼ Given U and X0, find the marginal utility price.

❼ Pick π such that the augmented market (consisting of the original market and the
contingent claim) has no arbitrage.

Theorem. Suppose that the original market has no arbitrage. There is no arbitrage in the
augmented market if and only if there exists a risk-neutral measure for the original market
such that

π =
1

1 + r
EQ(Y )

In particular, the set of no-arbitrage prices of the claim is an interval.

Proof. The first part is just the fundamental theorem of asset pricing. The second part. Fix
two risk neutral measures Q0 and Q1 and let Qp have density

dQp

dP
= p

dQ1

dP
+ (1− p)

dQ0

dP

where 0 ≤ p ≤ 1. Note that dQp

dP
is strictly positive, so Qp is equivalent to P. Also

EQp(S1) = pEQ1(S1) + (1− p)EQ0(S1) = (1 + r)S0

and hence Qp is a risk-neutral measure. Hence for any 0 ≤ p ≤ 1 the expression

1

1 + r
EQp(Y ) = pπ1 + (1− p)π0

is a no-arbitrage price of the claim. This shows that the set of no-arbitrage prices is an
interval.

Remark. Note that the marginal utility price of a claim

π0(Y ) =
E[U ′(X∗

1 )Y ]

(1 + r)E[U ′(X∗
1 )]

is also a no-arbitrage price since U ′(X∗
1 ) is proportional to the density of a risk-neutral

measure. However, in general we cannot say that an indifference price is a no-arbitrage
prices, but since π(Y ) ≤ π0(Y ), we can say it is bounded from above by a no-arbitrage price.

2
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3 Attainable claims

Definition. A contingent claim with payout Y is attainable iff Y = a+ b⊤S1 for some a ∈ R

and b ∈ Rd.

Remark. We can equivalently write

a+ b⊤S1 = (1 + r)x+ b⊤[S1 − (1 + r)S0]

with
x =

a

1 + r
+ b⊤S0.

❼ Attainable claims have indifference prices independent of U and X0 (example sheet)

❼ Attainable claims have marginal utility prices independent of U and X0

❼ Attainable claims have unique no-arbitrage prices (today)

Theorem (Attainable claims have unique no-arbitrage prices). Suppose that our given mar-
ket of tradable assets has no arbitrage. If a contingent claim is attainable then there is unique
initial price such that the augmented market has no arbitrage.

Proof. Suppose
Y = (1 + r)x+ b⊤[S1 − (1 + r)S0]

To show: the unique no arbitrage price is π = x.
Method 1. Use the FTAP (in lecture) The only possible no arbitrage prices of the claim are
of the form

π =
1

1 + r
EQ(Y ) = x+

b⊤

1 + r
EQ[S1 − (1 + r)S0] = x

where Q is a risk-neutral measure. Since the answer is always x, the no-arbitrage price is
unique.
Method 2. Use the definition of arbitrage (not lectured) First, suppose π = x. Let (ϕ⊤, φ)⊤

be a candidate arbitrage:

ϕ⊤[S1 − (1 + r)S0] + φ[Y − (1 + r)x] ≥ 0 almost surely

This means
(ϕ+ φb)⊤[S1 − (1 + r)S0] ≥ 0 almost surely

Since the original market has no arbitrage, the almost sure inequalities are almost sure
equalities. So there is no arbitrage in the augmented market. So π = x is a no-arbitrage
price.

Now suppose π > x. Note

b⊤[S1 − (1 + r)S0]− [Y − (1 + r)π] = (1 + r)(π − x) > 0

so the portfolio (b⊤,−1)⊤ ∈ Rd+1 is an arbitrage in the augmented market. Otherwise, if
π < x the portfolio (−b⊤,+1)⊤ is an arbitrage. Hence there is exactly one price such that
the augmented market has no arbitrage.

3



Theorem (Claims with unique no-arbitrage prices are attainable). Suppose that our given
market of tradable assets has no arbitrage. A contingent claim is attainable if there is unique
initial price such that the augmented market has no arbitrage.

Proof. Use the FTAP. Details are on the example sheet.

4
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1 Examples of attainable claims

Example 1: Forward contract. A forward contract is the right and the obligation to buy a
given asset at fixed price K (the strike) at time 1. When d = 1, the payout of a forward
on the risky asset is given by Y = S1 −K. Note that this is attainable by holding 1 share
and borrowing K/(1 + r) from the bank. Hence the unique no-arbitrage initial price of the
forward is π = S0 −K/(1 + r)

[The strike of a forward contract is usually chosen such that the initial price of the forward
is zero. That is K = (1 + r)S0. This is called the forward price of the asset.]
Example 2: one-period binomial model. Suppose d = 1 as before and that S1 can take exactly
two values with P(S1 = S0(1 + b)) = p = 1 − P(S1 = S0(1 + a)), for constants −1 < a < b,
where 0 < p < 1.

First we find the risk-neutral measures. LetQ(S1 = S0(1+b)) = q = 1−Q(S1 = S0(1+a)).
Then

S0 =
1

1 + r
EQ(S1) =

1

1 + r
S0(1 + b)q +

1

1 + r
S0(1 + a)(1− q)

so

q =
r − a

b− a
and 1− q =

b− r

b− a

Thus we learn that there exists a risk-neutral measure iff

a < r < b

in which case the risk-neutral measure is unique. This means that every contingent claim is
attainable! Consider a claim with payout Y = g(S1). We need only check that the unique
solution (x, θ) to

(1 + r)x+ θ[S1 − (1 + r)S0] = g(S1)

that is, the system of equations

(1 + r)x+ θS0(b− r) = g(S0(1 + b))

(1 + r)x+ θS0(a− r) = g(S0(1 + a))

1



is

θ =
g(S0(1 + b))− g(S0(1 + a))

S0(b− a)

x =
1

(1 + r)(b− a)
[(r − a)g(S0(1 + b)) + (b− r)g(S0(1 + a))] =

1

1 + r
EQ[g(S1)]

2 Multi-period models

Motivating discussion

❼ In a one period model, we think of S0 as constant but S1 as random

❼ In a two period model, S0 is constant, but S1 and S2 are random, at least as observed
at time 0.

❼ But at time 1, we can think of both S0 and S1 as constant, and only S2 is random

flow of information

❼ Initially, an agent has information F0

❼ at time 1, has information F1

❼ and at time 2, has information F2.

❼ Naturally, we should have F0 ⊆ F1 ⊆ F2

❼ We also want, for instance, S0 and S1 (but not S2 ) to be F1-‘measurable’.

❼ But what is information?

Given (Ω,F ,P), and a ‘set of information’ G, an event A ∈ F is G-measurable intuitively
iff

P(A|G) is always either 0 or 1

Example.

❼ Imagine flipping a coin two times.

❼ Let G be knowledge of the result of the first flip.

❼ P({HH,HT}|G) = 1 if the first flip is heads and 0 otherwise. So {HH,HT} is G-
measurable. That is to say, knowing G, you can always measure whether the outcome
is in {HH,HT} or not.

❼ P({TT}|G) = 1/2 if the first flip is tails, so {TT} is not G measurable. That is, even
knowing G, sometimes you cannot perfectly measure whether the outcome is TT or
not.

2



3 Measurability

Idea: Identify the information G with the collection of all G-measurable events.
What kind of collection of events should it be?

Definition. Given a set Ω, a non-empty collection G of subsets of Ω is called a sigma-algebra

iff

❼ A ∈ G implies Ac ∈ G

❼ A1, A2, . . . ∈ G implies ∪nAn ∈ G.

Example. Consider tossing a coin twice. Let Ω = {HH,HT, TH, TT}. The information
measurable after the first coin toss is {∅,Ω, {HH,HT}, {TH, TT}, }

Definition. Given a sigma-algebra G, a random variable X is G-measurable iff the event
{X ≤ x} is in G for all x ∈ R.

Remark. Intuitively, knowing the information in G allows you measure the value of X.
Remark. If X is G-measurable, then the event {X ∈ B} is in G for all ’nice’ (for the
measure theory specialists: Borel) subsets B ⊆ R.
Remark. If X takes values in the countable set {x1, x2, . . .} then X is G-measurable iff
{X = xi} ∈ G for all i.
Exercise. Show that if X is measurable with respect to the trivial sigma-algebra {∅,Ω}
then X is equal to a constant.

Definition. The sigma-algebra generated by a random variable X is the sigma-algebra G
containing all events of the form {X ∈ B} where for ‘nice’ subsets B ⊆ R. Notation:
G = σ(X)

Theorem (Sometimes called factorisation lemma). A random variable Y is measurable re-

spect to σ(X) if and only if there is a ‘nice’ function f such that Y = f(X).

3
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1 Conditional expectation

Set up: Probability space (Ω,F ,P). Given a sigma-algebra G ⊆ F , how to define E(X|G)?
Motivation. Conditional expectation given an event

E(X|G) =
E(X✶G)

P(G)

where X is integrable (i.e. E(|X|) < ∞ ) and P(G) > 0.
Motivation. Conditional expectation given a discrete random variable.

Suppose Y takes values in {y1, y2, . . .} and X in integrable. Let

f(y) = E(X|Y = y)

Then we define
E(X|Y ) = f(Y )

Note that in this set-up E(X|Y ) is σ(Y )-measurable. Also, it satisfies the Projection

property: For any σ(Y )-measurable random event G we have

E[X✶G] = E[E[X|Y ]✶G].

Proof of the projection property for conditional expectation given a discrete random variable:
By measurability there exists a subset B ⊆ {y1, y2, . . .} such that G = {Y ∈ B}. By the law
of total probability

E[f(Y )✶{Y ∈B}] =
∑

i

P(Y = yi)E(X|Y = yi)✶{yi∈B}

=
∑

i:yi∈B

E(X✶{Y=yi})

= E[X✶{Y ∈B}]

since ∑

i:yi∈B

✶{Y=yi} = ✶{Y ∈B}

We now use the projection property as defining property of conditional expectation:

1



Definition. The conditional expectation of an integrable random variable X given a sigma-
algebra G is any G-measurable integrable random variable Z such that

E(X✶G) = E(Z✶G)

for all events G ∈ G.

Proposition (Existence and uniqueness of conditional expectations). Let X be integrable

and G be a sigma-algebra. There exists a unique conditional expectation of X given G.

Proof. Existence requires some analysis. But uniqueness is straight-forward. Let Z0, Z1 be
two conditional expectations of X given G. By definition, this means for all G ∈ G we have

E[Z0✶G] = E[X✶G] = E[Z1✶G] (∗)

Now note {Z0 < Z1} is in G since Z1 and Z0 are both G-measurable by definition. Of
course

(Z1 − Z0)✶{Z0<Z1} ≥ 0

But by equation (∗) we have
E[(Z1 − Z0)✶{Z0<Z1}] = 0

so by the pigeon-hole principle we have (Z1 −Z0)✶{Z0<Z1} = 0 almost surely. That is to say,
we have Z1 − Z0 ≤ 0 almost surely. Now by symmetry we also have Z1 − Z0 ≥ 0 almost
surely, and hence Z1 = Z0 almost surely as claimed.

Notation: The conditional expectation of X given G is denoted E(X|G). In the special case
where G = σ(Y ) for a random variable Y , we write E(X|Y ) for E(X|σ(Y )).
Remark. Note that we have already checked that our new definition of E(X|Y ) agrees with
our old definition in the case where Y is discrete.

The following gives an interpretation of conditional expectation given a sigma-algebra:

Proposition (Mean squared error minimisation). Suppose X is square-integrable and G a

sigma-algebra. Then E(X|G) minimises the quantity

E[(X − Z)2]

among all G-measurable square-integrable Z.

Sketch of proof. By measure theory, the following extended projection property holds true.
For any square-integrable G-measurable random variable Y we have

E[XY ] = E (E[X|G]Y )

Now given Z, let Y = E[X|G]− Z.

E[(X − Z)2] = E[(X − E[X|G] + Y )2]

= E[(X − E[X|G])2] + 2E[(X − E[X|G])Y ] + E[Y 2]

= E[(X − E[X|G])2] + E[Y 2]

≥ E[(X − E[X|G])2]

since Y is G-measurable, where we have used the extension of the projection property dis-
cussed above.

2



Remark. The above proof may look familiar – this is exactly how the Rao–Blackwell
theorem from IB Statistics is proven.
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1 Properties of conditional expectations

Theorem. Supposing all conditional expectations are defined:

❼ additivity: E(X + Y |G) = E(X|G) + E(Y |G)

❼ ‘Pulling out a known factor’: If X is G-measurable, then E(XY |G) = XE(Y |G).

❼ tower property: If H ⊆ G then

E[E(X|G)|H] = E[E(X|H)|G] = E(X|H)

❼ If X is independent of G then E(X|G) = E(X).

❼ positivity: If X ≥ 0, then E(X|G) ≥ 0.

❼ Jensen’s inequality: If f is convex, then E[f(X)|G] ≥ f [E(X|G)]

❼ ‘Fix known quantity and average independent one’: If X is independent of G and Y is

G-measurable, then

E[f(X, Y )|G] = E[f(X, y)|G]
∣

∣

y=Y

Example. Suppose X, Y are independent N(0, 1) random variables, and let G = σ(Y ). Then

E[f(X, Y )|G] =

∫

f(x, Y )ϕ(x)dx

where ϕ is the probability density function of N(0, 1).

1



2 Filtrations, adaptedness and martingales

Definition. A filtration is a family (Ft)t≥0 of sigma-algebras such that Fs ⊆ Ft for all
0 ≤ s ≤ t.

Convention for this course: Unless otherwise specified, we will assume that F0 = {∅,Ω}.

Definition. A stochastic process is a family (Xt)t≥0 of random variables.

Definition. A stochastic process (Xt)t≥0 is adapted to a filtration (Ft)t≥0 iff Xt is Ft mea-
surable for all t ≥ 0. The process is integrable if E(|Xt|) < ∞ for all t ≥ 0.

Remark. By our convention, if (Xt)t≥0 is adapted to (Ft)t≥0, then X0 is a constant, that is,
not random.

The following definition is will be useful for examples.

Definition. The filtration (Ft)t≥0 generated by a process (Xt)t≥0 is Ft = σ(Xs : 0 ≤ s ≤ t)
for all t ≥ 0. (i.e. the smallest fitration such that the process is adapted)

Definition. An adapted, integrable process (Xt)t≥0 is a martingale with respect to a filtra-
tion (Ft)t≥0 iff

E(Xt|Fs) = Xs for all 0 ≤ s ≤ t

Remark. By the rules of conditional expectations, an equivalent definition is this: An
adapted, integrable process (Xn)n≥0 is a martingale iff

E(Xt −Xs|Fs) = 0 for all 0 ≤ s ≤ t.

Theorem. An adapted, integrable discrete-time process (Xn)n≥0 is a martingale with respect

to a filtration (Fn)n≥0 iff

E(Xn|Fn−1) = Xn−1 for all n ≥ 1.

Proof. If (Xn)n≥0 is a martingale, then we can use the definition with s = n− 1 and t = n.
Now suppose the given condition holds for all n ≥ 1. Note that for k ≥ 0 we have

E(Xs+k|Fs) = E[E(Xs+k|Fs+k−1)|Fs]

= E[Xs+k−1|Fs]

by the tower property. Hence the martingale property is proven fixing s and using induction
in t.

Example. Given a filtration (Ft)t≥0 and an integrable random variable Y . LetXt = E(Y |Ft)
for t ≥ 0. Then (Xt)t≥0 is a martingale.

❼ That Xt is integrable and Ft-measurable is from the definition of conditional expecta-
tion.

❼ and E(Xt|Fs) = E[E(Y |Ft)|Fs] = E(Y |Fs) = Xs by the tower property.
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1 Discrete-time martingales

Example.

❼ Let X1, X2, . . . be independent with E(Xn) = 0 for all n.

❼ Let S0 = 0 and Sn = X1 + . . .+Xn.

Then (Sn)n≥0 is a martingale in the filtration generated by (Xn)n≥1 since

❼ Sn is integrable: E(|Sn|) ≤ E(|X1|) + . . .+ E(|Xn|) < ∞

❼ Sn is clearly Fn measurable (since it is a function of X1, . . . , Xn)

❼ E(Sn − Sn−1|Fn−1) = E(Xn|Fn−1) = E(Xn) = 0 by the independence of Xn and Fn−1.

Note that in this example (Sn)n≥0 and (Xn)n≥1 generate the same filtration

Definition. A discrete-time process (Hn)n≥1 is previsible (or predictable) with respect to a
filtration (Fn)n≥0 iff Hn is Fn−1-measurable for all n ≥ 1.

Remark. The index set for a previsible process is usually {1, 2, . . .}.
Remark. Let Xn = Hn+1. Then (Hn)n≥1 is previsible if and only if (Xn)n≥0 is adapted.

Definition. The martingale transform of a previsible process (Hn)n≥1 with respect to an
adapted process (Xn)n≥0 is the process defined by

Yn =
n
∑

k=0

Hk(Xk −Xk−1)

Theorem. The martingale transform of a bounded previsible process with respect to a mar-

tingale is a martingale.

1



Proof. Let (Hn)n≥1 be bounded and previsible and (Xn)n≥0 a martingale, and let (Yn)n≥0

be the martingale transform. Note that (Yn)n≥0 is adapted since each term of the formula
defining Yn is Fn-measurable by the adaptedness of (Xn) and the previsibility of (Hn).
Integrability follows from by the triangle inequality

E(|Yn|) ≤ E

(

n
∑

k=1

|Hk||Xk −Xk−1|

)

≤ C

n
∑

k=1

E(|Xk −Xk−1|) < ∞

and the integrability of (Xn) (from the definition of martingale), where C > 0 is the constant
such that |Hk| ≤ C a.s. for all k (from the assumption of boundedness of (Hn))

Now

E(Yn − Yn−1|Fn−1) = E[Hn(Xn −Xn−1)|Fn−1]

= HnE(Xn −Xn−1|Fn−1)

= 0

by taking out what is known, and the martingale property of (Xn)n≥0.

Important example from finance. Consider a market

❼ with a risk-free asset with interest rate r

❼ and d risky assets with time n prices (Sn)n≥0.

and investor who

❼ holds the portfolio θn ∈ R
d of risky assets during the time interval (n− 1, n],

❼ and the rest of his wealth is held in the risk-free asset.

❼ Suppose the investor is self-financing : his changes in wealth are explained by the
changes in asset prices (but not by consumption or non-market income)

Xn = (1 + r)Xn−1 + θ⊤
n
[Sn − (1 + r)Sn−1]

Definition. The investor’s discounted wealth at time n is Xn

(1+r)n
. The discounted asset prices

at time n are Sn

(1+r)n
.

Proposition. A self-financing investor’s discounted wealth is the initial wealth plus the mar-

tingale transform of the portfolio process with respect to the discounted risky asset prices.

Proof. It is easy to see by induction that

Xn

(1 + r)n
= X0 +

n
∑

k=1

θ⊤
k

(

Sk

(1 + r)k
−

Sk−1

(1 + r)k−1

)

2



2 Stopping times

Definition. A stopping time for a filtration (Ft)t≥0 is a random variable T valued in
{0, 1, 2, . . . ,+∞} (discrete-time) or [0,+∞] (continuous time) such that

{T ≤ t} ∈ Ft for all t ≥ 0

Example.

❼ Let (Xn)n≥0 be a discrete-time adapted process.

❼ Let T = inf{n ≥ 0 : Xn > 0}

❼ Convention: inf ∅ = ∞.

❼ Then T is a stopping time.

Note {T ≤ n} = ∪n

k=0{Xk > 0} ∈ Fn since {Xk > 0} ∈ Fk ⊆ Fn for all k ≤ n. (Recall
that the sigma-algebra Fn is closed under finite unions.)

Possible counter-example.

❼ Let (Xn)n≥0 be an adapted process.

❼ Let T = sup{n ≥ 0 : Xn > 0}

❼ Then T is a not a stopping time in general.

Note {T ≤ n} = ∩∞
k=n+1{Xk ≤ 0} so the event {T ≤ n} generally contains information

about the future.

3
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1 Optional sampling theorem

Definition. Let (Xt)t≥0 be an (either discrete- or continuous-time) adapted process and T

a stopping time. The stopped process (Xt∧T )t≥0 is defined by

Xt∧T =

{

Xt if t ≤ T

XT if t > T

Remark. Recall the notation a ∧ b = min{a, b} for real numbers a, b.
For the rest of the lecture, time is discrete.

Proposition. Let (Xn)n≥0 be an adapted process and and T a stopping time. Then the

stopped process (Xn∧T )n≥0 is X0 plus a martingale transform.

Proof. Note that

Xn∧T = X0 +
n

∑

k=1

✶{k≤T}(Xk −Xk−1)

Since {k ≤ T} = {T ≤ k − 1}c ∈ Fk−1 for all k ≥ 1 the process (✶{n≤T})n is previsible.

Corollary. A stopped martingale is a martingale.

Proof. This follows from the theorem that says the martingale transform of a bounded
previsible process with respect to a martingale is again a martingale.

Theorem (Optional stopping theorem). Let T be a stopping time and (Xn)n≥0 be a mar-

tingale such that (Xn∧T )n bounded and T < ∞ almost surely. Then

E(XT ) = X0

Remark. Recall our convention that F0 = {∅,Ω} so X0 is constant.

1



Proof. Let Mn = Xn∧T . Note (Mn)n≥0 is a martingale so that

E(Xn∧T ) = E(Mn|F0) = M0 = X0

for all non-random n, by the definition of martingale and the convention on F0.
Now by assumption there exists a constant C > 0 such that |Xn∧T | ≤ C a.s. for all n.

Also, since T is a.s. finite we have Xn∧T → XT a.s., and hence |XT | ≤ C a.s. In particular,
we have

|Xn∧T −XT | ≤ 2C✶{T>n}

by the triangle inequality.
Combining the two observations above,

|E(XT )−X0| = |E(XT −Xn∧T )|
≤ E(|XT −Xn∧T |)
≤ 2CP(T > n)

→ 0

Remark. It turns out that we do not need to assume that T is finite nor do we need to
assume that (Xn∧T )n is bounded to get the conclusion. A much weaker version of the OST
is
Theorem. (A more general optional stopping theorem). Let (Xn)n be a martingale and T

a stopping time such that (Xn∧T )n is uniformly integrable. Then E(XT ) = X0.

2 Examples of the optional stopping theorem

Let (Sn)n≥0 be a simple symmetric random walk starting from S0 = 0, i.e. Sn = ξ1+ . . .+ ξn
where (ξn)n≥1 are IID P(ξn = ±1) = 1

2
.

Example 1.

❼ Fix integers a, b > 0 and let T = inf{n ≥ 0 : Sn ∈ {−a, b}.

❼ By Markov Chains, T < ∞ almost surely.

❼ Let p = P(ST = −a) and q = P(ST = b).

❼ By optional stopping S0 = 0 = E(ST ) = −ap+ bq

❼ p = b
a+b

and q = a
a+b

❼ Optional stopping is justified since |ST∧n| ≤ max{a, b} for all n.

Counterexample 2.

2



❼ Now let τ = inf{n ≥ 0 : Sn = −a}.

❼ By Markov Chains, τ < ∞ almost surely. So Sτ = −a.

❼ E(Sτ ) = −a ̸= 0 = S0 in apparent contradiction to the optional stopping theorem.

❼ But note that Sn∧τ is not bounded from above, so there is no a priori reason to believe
that the optional stopping theorem is applicable.

Example 3. Our goal is to find the probability generating function E(zτ ) for fixed 0 < z < 1.
Claim: the process wSnzn is a martingale iff w + w−1 = 2z−1. Indeed, note

E(wSnzn|Fn−1)

wSn−1zn−1
= zE(wξn) =

z

2
(w + w−1)

Let Mn = wSnzn where w + w−1 = 2z−1. This is a martingale with Mτ = w−azτ . We
want to apply the optional stopping theorem to conclude

E(Mτ ) = w−a
E(zτ ) = M0 = 1

or
E(zτ ) = wa.

But which value of w makes the above identity true? Given z, there are two possible solutions

w± =
1±

√
1− z2

z

and 0 < w− < 1 while w+ > 1. In particular, since Sn∧τ ≥ −a for all n and z < 1, then

wSn∧τ

− zn∧T ≤ w−a
− for all n

Hence the OST is applicable and the correct formula is with w = w−, i.e.

E(zτ ) = wa
− =

(

1−
√
1− z2

z

)a

.

3
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1 Submartingales and supermartingales

Definition. An integrable adapted process (Xt)t≥0 with respect to a filtration (Ft)t≥0 (in
either discrete- or continuous-time) is a submartingale if and only if

E(Xt|Fs) ≥ Xs for all 0 ≤ s ≤ t

An integrable adapted (Xt)t≥0 is called supermartingale with respect to a filtration iff
(−Xt)t≥0 is a submartingale.

For the rest of the time, we work in discrete-time.

Remark. In discrete-time, a submartingale is an integrable adapted process (Xn)n≥0 such
that

E(Xn|Fn−1) ≥ Xn−1 for all n ≥ 1

by the tower property and the posivity of conditional expectation.

Theorem. The martingale transform of a non-negative bounded previsible process with re-

spect to a submartingale is a submartingale.

Proof. Let (Hn)n≥1 be non-negative, bounded and previsible, and (Xn)n≥0 a submartin-
gale, and let (Yn)n≥0 be the martingale transform. Integrability of (Yn)n follows from the
boundedness of (Hn)n and integrability of (Xn)n. The adaptedness of (Yn)n follows from the
adaptedness of both (Hn)n and (Xn)n.

Now

E(Yn − Yn−1|Fn−1) = E[Hn(Xn −Xn−1)|Fn−1]

= HnE(Xn −Xn−1|Fn−1)

≥ 0

by taking out what is known, and the submartingale property of (Xn)n≥0.

1



Theorem. Let (Xn)n≥0 be a submartingale and S ≤ T are stopping times. Let

Mn = Xn∧T −Xn∧S.

Then (Mn)n≥0 is a submartingale.

Proof. Note

Mn =
n

∑

k=1

✶{S<k≤T}(Xk −Xk−1).

Also Hn = ✶{S<k≤T} = ✶{S≤n−1}−✶{T≤n−1} is bounded and Fn−1-measurable. Hence (Mn)n
is the martingale transform of a non-negative bounded previsible process with respect to a
submartingale.

Theorem (Optional sampling theorem). Let (Xn)n≥0 be a submartingale and S ≤ T are

bounded stopping times, then

E(XT ) ≥ E(XS)

Proof. Let Mn = Xn∧T − Xn∧S. Now pick a constant N such that T ≤ N a.s. The
conclusion follows from E(MN) ≥ M0 = 0 since MN = XT −XS.

2 Controlled Markov processes

Definition. A Markov process (Xt)t≥0 with respect to a filtration (Ft)t≥0 (in either discrete-
or continuous-time) is an adapted process such that

P(Xt ∈ A|Fs) = P(Xt ∈ A|Xs)

for all 0 ≤ s ≤ t, (measurable) sets A, and where (Ft)t≥0.

We now work in discrete time. To check that a process (Xn)n is a martingale, we need
only check

P(Xn ∈ A|Fn−1) = P(Xn ∈ A|Xn−1)

for all n ≥ 1.
A useful way of to think about a Markov process is as random dynamical system. A

Markov process valued in X can be constructed with

❼ Initial condition X0 = x

❼ A function G : N×X × V → X

❼ An sequence (ξn)n≥1 of independent V-valued random variable

❼ Then we construct the process recursively

Xn = G(n,Xn−1, ξn)

for n ≥ 1.

2



Example. A simple symmetric random walk on Z starting at X0 = 0 can be constructed
as follows

❼ Let V = {−1, 1}

❼ Let (ξn)n≥1 be an IID sequence such that P(ξn = ±1) = 1/2.

❼ Let G(n, x, v) = x+ v for all n.

❼ Then Xn = G(n,Xn−1, ξn) for n ≥ 1.

A controlled Markov process is built from

❼ Initial condition X0 = x

❼ A previsible process (Un)n≥1

❼ A function G : N×X × U × V → X

❼ A sequence (ξn)n≥1 of independent V-valued random variables

❼ Then we construct the process recursively

XU

n = G(n,XU

n−1, Un, ξn)

for n ≥ 1.

3 Stochastic optimal control

A typical problem that we will encounter is this. Given a controlled Markov process (XU
n )n≥0

and a (non-random) time horizon N we wish to

maximise E

[

N
∑

k=1

f(k, Uk) + g(XU

N)

∣

∣

∣

∣

X0 = x

]

over previsible controls (Uk)1≤k≤N , where the controlled Markov process evolves as Xn =
G(n,Xn−1, Un, ξn) for n ≥ 1 for a given function G and independent sequence (ξn)n.

Definition. The system of equations

V (N, x) = g(x) for all x

V (n− 1, x) = sup
u

{f(n, u) + E[V (n,G(n, x, u, ξn))]} for all x, 1 ≤ n ≤ N

is called the Bellman equation for the problem.

Definition. The value function for the problem is

V (n, x) = sup
(Uk)n+1≤n≤N

E

[

N
∑

k=n+1

f(k, Uk) + g(XU

N)

∣

∣

∣

∣

XU

n = x

]

.

The dynamic programming principle: Under some assumptions, the solution to the
Bellman equation is the value function. (details in next lecture)
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1 Dynamic programming principle

Given

❼ A sequence (ξn)n≥1 of independent random variables generating a filtration (Fn)n≥0

❼ A function G(·, ·, ·, ·)

❼ An initial condition X0

for any previsible (Un)n≥1 construct the controlled Markov process by

XU
n =

{

X0 if n = 0
G(n,XU

n−1, Un, ξn) if n ≥ 1

Now given

❼ A non-random time horizon N > 0

❼ Suitably integrable functions f(·, ·) and g(·)

we seek to maximise

E

[

N
∑

k=1

f(k, Uk) + g(XU
N)

]

Theorem (The dynamic programming principle). Let V solve the Bellman equations:

V (N, x) = g(x) for all x

V (n− 1, x) = sup
u

{f(n, u) + E[V (n,G(n, x, u, ξn))]} for all 1 ≤ n ≤ N, and x

and suppose for each n and x there is an optimal solution u∗(n, x) to the maximisation

problem, so that

V (n− 1, x) = f(n, u∗(n, x)) + E[V (n,G(n, x, u∗(n, x), ξn))] for all 1 ≤ n ≤ N, and x

1



Fix the initial condition X∗
0 = X0 and let

U∗
n = u∗(n,X∗

n−1),

X∗
n = G(n,X∗

n−1, U
∗
n, ξn) for all 1 ≤ n ≤ N

so that XU∗

n = X∗
n for all 0 ≤ n ≤ N . Then (U∗

n)1≤n≤N is the optimal control and V is the

value function.

Proof. Fix X0 and let (Un)1≤n≤N be a previsible control, and consider the associated con-
trolled process (XU

n )0≤n≤N . Let

MU
n =

n
∑

k=1

f(k, Uk) + V (n,XU
n )

Claim: (Mn)0≤n≤N is a supermartigale.
Indeed, this process is adapted and integrable (by assumption). Now using the ‘fix known

quantities and average over independent quantities’ property of conditional expectation, we
have by the Bellman equation that

E[MU
n −MU

n−1|Fn−1]

= f(n, Un) + E[V (n,XU
n )|Fn−1]− V (n− 1, XU

n−1)

= {f(n, u) + E[V (n,G(n, x, u, ξn))]− V (n− 1, x)}
∣

∣

u=Un,x=XU
n−1

≤ 0

with equality if Un = u∗(n,XU
n−1).

Hence, using V (N, x) = g(x) for all x, we have by the tower property that

E

[

N
∑

k=n+1

f(k, Uk) + g(XU
N)

∣

∣

∣

∣

XU
n

]

= E

[

MU
N −

n
∑

k=1

f(k, Uk)

∣

∣

∣

∣

XU
n

]

= E

[

E

(

MU
N −

n
∑

k=1

f(k, Uk)

∣

∣

∣

∣

Fn

)

∣

∣

∣

∣

XU
n

]

≤ E

[

MU
n −

n
∑

k=1

f(k, Uk)

∣

∣

∣

∣

XU
n

]

= V (n,XU
n )

with equality if U = U∗. This shows

V (n, x) = max
(Uk)k+1≤n≤N

E

[

N
∑

k=n+1

f(k, Uk) + g(XU
N)

∣

∣

∣

∣

XU
n = x

]

as claimed.

Remark. The above proof uses an argument sometimes called the martingale principle of

optimal control.

2



2 Optimal investment

Given a market with interest rate r and d risky assets with prices (Sn)n≥0

❼ consider an investor who, between time n−1 and time n holds θn shares and consumes
Cn cash, where 0 ≤ Cn ≤ Xn−1.

❼ wealth evolves as Xn = (1 + r)(Xn−1 − Cn) + θ⊤n [Sn − (1 + r)Sn−1]

To have a tractable problem, we make some simplifying assumptions:

❼ assume d = 1

❼ assume Sn = Sn−1ξn where (ξn)n are independent

❼ Note Xn = G(n,Xn−1,
(

Cn

ηn

)

, ξn)) where ηn = Sn−1θn and

G(n, x,
(

c

η

)

, v) = (1 + r)(x− c) + η(ξ − (1 + r))

so the wealth is a controlled Markov process with two-dimensional controls u =
(

c

η

)

.

Given a time horizon N , a natural goal is to

maximise E

[

N
∑

k=1

U(Ck) + U(XN)

]

where U is the investor’s utility function
The Bellman equation is

V (N, x) = U(x)

V (n− 1, x) = max
c,η

E [U(c) + V (n, (1 + r)(x− c) + η(ξ − (1 + r)))]

❼ Generally, intractable

❼ but suppose the utility is CRRA: U(x) = 1
1−R

x1−R for x > 0, where R > 0, R ̸= 1.

3
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1 Example of optimal investment

❼ Cn consumed and ηn = θnSn−1 total held in stock between time n− 1 and time n

❼ Sn = Sn−1ξn where (ξn)n are IID

❼ wealth evolves as Xn = (1 + r)(Xn−1 − Cn) + ηn[ξn − (1 + r)]

❼ Given a time horizon N , the goal is to

maximise E

[

N
∑

k=1

U(Ck) + U(XN)

]

where U is the investor’s utility function

The Bellman equation is

V (N, x) = U(x)

V (n− 1, x) = max
c,η

E [U(c) + V (n, (1 + r)(x− c) + η(ξ − (1 + r)))]

❼ Generally, intractable

❼ but suppose the utility is CRRA: U(x) = 1
1−R

x1−R for x > 0, where R > 0, R ̸= 1.

❼ Guess: V (n, x) = U(x)An

❼ Check: Correct for n = N with AN = 1. Assume correct for n = k for some k ≤ N .
The

V (k − 1, x)max
c,η

{U(c) + E[V (k, (1 + r)(x− c) + η(ξ − (1 + r))]}

= x1−R max
c,η

{

U(c/x)

+ Ak(1− c/x)1−R
E

[

U

(

(1 + r) +
η

x− c
(ξ − (1 + r))

)]

}

= x1−R max
c

{U(c/x) + AkU(1− c/x)α}

where α = (1−R)maxt E [U ((1 + r) + t(ξ − (1 + r)))]

1



❼ Now optimise over s = c/x: differentiate and set equal to zero to get

s−R
k = (1− sk)

−RAkα ⇒ sk =
1

1 + (Akα)1/R

❼ plug this back in
V (k − 1, x) = U(x)(1 + (Akα)

1/R)R

❼ So induction would work if

Ak−1 = (1 + (Akα)
1/R)R for all k ≤ N

❼ Solve this recursion: A
1/R
k−1 = 1 + α1/RA

1/R
k with AN = 1 implying A

1/R
k = 1 + α1/R +

· · ·+ α(N−k)/R yielding

An =

(

1− α(N−n+1)/R

1− α1/R

)R

for 0 ≤ n ≤ N

❼ Optimal strategy

C∗
n = X∗

n−1sn =
X∗

n−1

1 + (Anα)1/R
=

X∗
n−1(1− α1/R)

1− α(N−n+2)/R

θ∗n =
η∗n

Sn−1

=
t∗(X∗

n−1 − C∗
n)

Sn−1

where t∗ = argmaxtE [U ((1 + r) + t(ξ − (1 + r)))]

❼ Optimised wealth process evolves as

X∗
n = X∗

n−1α
1/R

(

1− α(N−n+1)/R

1− α(N−n+2)/R

)

(

(1 + r)(1− t∗) + t∗ξn
)

so

X∗
n = X0

(

αn/R − α(N+1)/R

1− α(N+1)/R

) n
∏

k=1

(

(1 + r)(1− t∗) + t∗ξk
)

2 Infinite-horizon problems

❼ Consider a controlled Markov process

Xn = G(Xn−1, Un, ξn)

where (Un)n≥1 is the previsible control where (ξn)n is IID. Note note explicit time
dependence in the function G.

2



❼ Problem:

maximise E

[

∞
∑

k=1

βk−1f(Uk)

]

where the subjective rate of discounting 0 < β < 1 is given

❼ The value function is

V (x) = E

[

∞
∑

k=1

βk−1f(Uk)|X0 = x

]

❼ The Bellman equation is

V (x) = max
u

{f(u) + βE[V (G(x, u, ξ))]}

❼ When is the solution of the Bellman equation the value function?

Theorem. Suppose f(u) ≥ 0 for all u and that V is a non-negative solution to the Bellman

equation. Suppose u∗(x) is the maximiser of

f(u) + βE[V (G(x, u, ξ))]

and let X∗
0 = X0 and U∗

n = u∗(X∗
n−1) and X∗

n = G(X∗
n−1, U

∗
n, ξn) for n ≥ 1. If

βn
E[V (X∗

n)] → 0

then V is the value function and U∗ is the optimal control.

To fully prove this, we need an important result from measure theory:

Theorem (Monotone convergence theorem). Let (Zn)n be an almost sure increasing sequence

of non-negative random variables. Then limn E(Zn) = E(limn Zn)

Proof of that the solution to the Bellman equation is the value function. Given a control (Un)n≥1

let

Mn =
n

∑

k=1

βk−1f(Uk) + βnV (Xn)

Note (Mn)n≥0 is a supermartingale

E[Mn −Mn−1|Fn−1] = βn−1 (f(Un) + βE[V (Xn)|Fn−1]− V (Xn−1))

≤ 0

3



with equality if U = U∗. Hence

V (x) = M0

≥ E[Mn]

= E

[

n
∑

k=1

βk−1f(Uk)

]

+ βn
E[V (Xn)]

with equality if U = U∗.
Now since V ≥ 0, we have

V (x) ≥ E

[

n
∑

k=1

βk−1f(Uk)

]

→ E

[

∞
∑

k=1

βk−1f(Uk)

]

for any control, where we have used that f ≥ 0 and the monotone convergence theorem.
And for U = U∗ we have

V (x) = E

[

n
∑

k=1

βk−1f(U∗
k )

]

+ βn
E[V (X∗

n)]

→ E

[

∞
∑

k=1

βk−1f(U∗
k )

]

since βn
E[V (X∗

n)] → 0 by assumption.

Remark. The monotone convergence theorem is not technically examinable for this course.
That is, if you need it for an exam question, then the text of the question will provide you
with a statement of the monotone convergence to use without proof.

4



Stochastic Financial Models 18

Michael Tehranchi

15 November 2023

1 Optimal stopping problems

❼ Consider a Markov process of the form

Xn = G(n,Xn−1, ξn)

where (ξ)n≥1 are independent.

❼ Fix a horizon N and consider the problem:

maximise E [g(XT )]

over stopping times 0 ≤ T ≤ N .

❼ The Bellman equation is

V (N, x) = g(x) for all x

V (n− 1, x) = max{g(x),E[V (n,G(n, x, ξn))]} for all x, 1 ≤ n ≤ N

Theorem.

V (n, x) = max {E [g(XT )|Xn = x] : T a stopping time, n ≤ T ≤ N}

The optimal stopping time is

T ∗ = inf{n ≥ 0 : V (n,Xn) = g(Xn)}

It can be described graphically as follows Let

C = {(n, x) : V (n, x) > g(x)} = ‘continuation region’

S = {(n, x) : V (n, x) = g(x)} = ’stopping region’

Then
T ∗ = inf{n ≥ 0 : (n,Xn) ∈ S}

1



2 Multi-period arbitrage

The set-up. Consider a market

❼ with a risk-free asset with interest rate r

❼ and d risky assets with time n prices (Sn)n≥0.

❼ The investor holds the portfolio θn ∈ Rd of risky assets during the time interval (n −
1, n], where θn is Fn−1-measurable

The wealth of a self-financing investor evolves as

Xn = (1 + r)Xn−1 + θ⊤
n
[Sn − (1 + r)Sn−1]

Hence

Xn = (1 + r)nX0 +
n
∑

k=1

(1 + r)n−kθ⊤
k
[Sk − (1 + r)Sk−1]

2



The investor holds
θ0
n
= Xn−1 − θ⊤

n
Sn−1

in the bank during the time interval (n− 1, n].

Definition. An arbitrage is a previsible process (ϕn)1≤n≤N such that

N
∑

k=1

(1 + r)N−kϕ⊤
k
[Sk − (1 + r)Sk−1] ≥ 0 almost surely

and

P

(

N
∑

k=1

(1 + r)N−kϕ⊤
k
[Sk − (1 + r)Sk−1] > 0

)

> 0

If ϕ is an arbitrage, then an investor would always prefer the investment strategy θ + ϕ

to the strategy θ.

Definition. A risk-neutral measure is a measure Q equivalent to P under which the dis-
counted asset price process

Mn = (1 + r)−nSn

is a martingale, that is,
1

1 + r
EQ(Sn|Fn−1) = Sn−1

for all n ≥ 1.

Theorem (Fundamental theorem of asset pricing). In a finite horizon multi-period model,

there is no arbitrage if and only if there exists a risk-neutral measure.

3 Introduction to the (Cox–Ross–Rubinstein) binomial

model

❼ d = 1 and Sn = Sn−1ξn

❼ (ξn)n≥1 generate a filtration (Fn)n and such that

0 < P(ξn = 1 + b|Fn−1) = 1− P(ξn = 1 + a|Fn−1) < 1 a.s. for all n

That is, the stock price can follow any path along the tree with positive probability

❼ S0 > 0 and −1 < a < b

3
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Theorem. Consider the N-step binomial model. There exists a risk-neutral measure if and

only if a < r < b. When it exists it is the unique measure Q such that (ξn)1≤n≤N are IID

under Q with

Q(ξ = 1 + b) = q =
r − a

b− a
= 1−Q(ξ = 1 + a).

Proof. Suppose such a risk-neutral measure Q exists. Then by definition

(1 + r)Sn−1 =EQ(Sn|Fn−1)

=Sn−1(1 + b)Q(ξn = 1 + b|Fn−1)

+ Sn−1(1 + a)Q(ξn = 1 + a|Fn−1)

and hence
Q(ξn = 1 + b|Fn−1) = q = 1−Q(ξn = 1 + a|Fn−1).

Note 0 < q < 1 if and only if a < r < b. Also, under this condition, the conditional
distribution of ξn is independent of n and Fn−1, so the (ξn)1≤n≤N are IID.

4
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1 Pricing and hedging European claims

Definition. A European contingent claim is an asset that pays an FN -measurable amount
Y at a fixed maturity date N .

Consider the binomial model with a < r < b and a European claim with time N payout
Y . Assume that the filtration is generated by the (Sn)n. This means there exists a function
fN such that

Y = fN(S0, . . . , SN)

Since there is only one risk-neutral measure Q, the unique time-n no-arbitrage price of the
claim

πn =
1

(1 + r)N−n
EQ[Y |Fn]

= fn(S0, . . . , Sn)

where the function fn exists by measurability.

Theorem. The wealth process starting from X0 = π0 employing the trading strategy (θn)1≤n≤N

defined by

θn =
fn(S0, . . . , Sn−1, Sn−1(1 + b))− fn(S0, . . . , Sn−1, Sn−1(1 + a))

Sn−1(b− a)

is such that Xn = πn for all 0 ≤ n ≤ N − 1 and XN = Y .

Proof. For each n, there is a unique Fn−1-measurable solution (xn−1, bn) to the equation

(1 + r)xn−1 + bn[Sn − (1 + r)Sn−1] = πn

i.e. the pair of equations

(1 + r)xn−1 + bnSn−1(b− r) = fn(S0, . . . , Sn−1, Sn−1(1 + b))

(1 + r)xn−1 + bnSn−1(a− r) = fn(S0, . . . , Sn−1, Sn−1(1 + a))

1



This solution is bn = θn and

xn−1 =
1

1 + r
EQ(πn|Fn−1)

=
1

(1 + r)N−n+1
EQ(Y |Fn−1)

= πn−1

by the tower property. Hence, if X0 = π0 and

Xn = (1 + r)Xn−1 + θn[Sn − (1 + r)Sn−1]

for 1 ≤ n ≤ N , we have by induction that Xn = πn for all 0 ≤ n ≤ N − 1 and XN = Y .

A European claim is often called plain vanilla if its payout of the form Y = g(SN) for
some function g. For instance a call option with payout Y = (SN−K)+ is a vanilla contingent
claim. Otherwise, a claim whose payout depends on the entire path of the underlying asset
price is called exotic.

In the case of the binomial model, the risky asset price is Markovian under Q. Hence,
for vanilla claims, we have

πn = V (n, Sn)

where the function is defined by

V (n, s) =
1

(1 + r)N−n
EQ[g(SN)|Sn = s]

=
1

(1 + r)N−n

N−n
∑

k=0

(

N − n

k

)

qk(1− q)N−n−kg
(

s(1 + b)k(1 + a)N−n−k
)

for all 0 ≤ n ≤ N we note

V (N, s) = g(s)

V (n− 1, s) =
1

1 + r

(

q V (n, s(1 + b)) + (1− q)V (n, s(1 + a))

)

for 1 ≤ n ≤ N

2 American claims

Definition. Given an adapted process (Yn)0≤n≤N , an American contingent claim is a con-
tract that pays its owner Yn if the owner chooses to exercise the contract at time n.

Example. An American put gives its owner the right, but not the obligation, to sell a
certain stock for a fixed strike price K for at any time up to the expiry N . The payout if
exercised at time n is (K − Sn)

+.

2



The time-n price of an American claim in a binomial model with unique risk neutral
measure Q can be calculated as

πn = max
n≤T≤N

EQ

[

1

(1 + r)T−n
YT |Fn

]

where the maximum is over stopping times T .
By the dynamic programming principle

πN = YN

πn−1 = max

{

Yn−1,
1

1 + r
EQ(πn|Fn−1)

}

An optimal stopping time is

T ∗ = min{0 ≤ n ≤ N : πn = Yn}

but it need not be unique.
Note that πn ≥ Yn for all 0 ≤ n ≤ N . That is, the price of the American claim always

dominates the current available payout of the claim.
Also πn−1 ≥ 1

1+r
EQ(πn|Fn−1) for all 1 ≤ n ≤ N . So the discounted price process

(

(1 + r)−nπn

)

0≤n≤N
is a supermartingale.

However, on the event {n ≤ T ∗} we have πn−1 =
1

1+r
EQ(πn|Fn−1), so the discounted price

process is a martingale up to the optimal stopping time. That means we can find the hedging
strategy just as in the case of European claims, by finding the unique Fn−1 measurable θn
such that

(1 + r)πn−1 + θn[Sn − (1 + r)Sn−1] = πn.

3
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1 Continuous-time finance

From discrete to continuous. Motivation

❼ Let Sn = S0ξ1 · · · ξn be the stock price in the binomial model

❼ If we assume that the (ξn)n are IID, then log Sn = logS0 +X1 + . . .+Xn is a random
walk

❼ Now time step n corresponds to time t = nδ where δ is very small.

❼ Let Ŝt = St/δ

❼ Then
log Ŝt = logS0 + µt+ σWt

where

❼ µ = E(X)/δ

❼ σ2 = Var(X)/δ

❼ Wt =
X1+...+Xt/δ−µt

σ

Properties of (Wt)t=nδ,n≥0

❼ W0 = 0

❼ E(Wt −Ws) = 0, Var(Wt −Ws) = 0 for all 0 ≤ s ≤ t

❼ Wt −Ws is independent of (Wu)u<s for all 0 ≤ slet

❼ and by the central limit theorem

Wt −Ws ≈ N(0, t− s)

as δ ↓ 0 (that is, hold s, t fixed and let m,n ↑ ∞, where n = t/δ and m = t/δ )

1



2 Introduction to Brownian motion

Definition. A Brownian motion (Wt)t≥0 is a stochastic process such that

❼ t 7→ Wt is continuous

❼ W0 = 0

❼ Wt −Ws is independent of (Wu)0≤u≤s for all 0 ≤ s ≤ t.

❼ Wt −Ws ∼ N(0, t− s) for all 0 ≤ s ≤ t.

3 Properties of Brownian motion

Theorem (Wiener 1923). Brownian motion exists.

Remark. A Brownian motion is called a Wiener process in the US.

Theorem. Brownian motion is a martingale in its filtration Ft = σ(Ws : 0 ≤ s ≤ t).

Proof. Brownian motion is integrable, adapted and

E[Wt −Ws|Fs] = E[Wt −Ws] = 0

for 0 ≤ s ≤ t by the independence of Wt −Ws and Fs.

2



Theorem. Brownian motion is a Markov process.

Proof. Let g be a bounded function. Since Ws is Fs measurable and Wt−Ws is independent
of Fs for 0 ≤ s ≤ t, we have

E[g(Wt)|Fs] = E[g(Wt −Ws +Ws)|Fs]

= E[g(Wt −Ws + x)]
∣

∣

x=Ws

= E[g(Wt)|Ws]

Definition. A process (Xt)t≥0 is Gaussian iff the random variables Xt1 , . . . , Xtn are jointly
normal for all 0 ≤ t1 ≤ . . . ≤ tn, i.e. the random variable

∑n
i=1

aiXti is normally distributed
for all constants a1, . . . , an.

Theorem. The following are equivalent

1. (Wt)t≥0 is a Brownian motion

2. (Wt)t≥0 is a Gaussian process such that

❼ t 7→ Wt is continuous

❼ E[Wt] = 0 for all t ≥ 0

❼ E[WsWt] = s for all 0 ≤ s ≤ t

Proof. Suppose (Wt)t≥0 is a Brownian motion. Fix 0 = t0 ≤ t1 ≤ . . . ≤ tn and a1, . . . , an.
Note

n
∑

i=1

aiWti =
n

∑

i=1

bi(Wti −Wti−1
)

where bk =
∑n

i=k ai. Since Wt1 − Wt0 , . . . ,Wtn − Wtn−1
are independent normals, and the

linear combination of independent normals is normal, we have that (Wt)t≥0 is Gaussian with
E[Wt] = E[W0] = 0 and

E[WsWt] = E[W 2

s ] + E[Ws(Wt −Ws)]

= Var(Ws) + E(Ws)E(Wt −Ws)

= s.

for 0 ≤ s ≤ t, since Ws and Wt −Ws are independent.
Conversely, suppose (Wt)t≥0 is a continuous Gaussian process such that E[Wt] = 0 and

E[WsWt] = s for all 0 ≤ s ≤ t. Then for t ≥ 0 we have Var(Wt) = E(W 2
t ) = t and hence for

0 ≤ s ≤ t, we have

Var(Wt −Ws) = Var(Wt) + Var(Ws)− 2Cov(Ws,Wt)

= t+ s− 2s

= t− s.

3



Finally for 0 ≤ u ≤ s ≤ t we have

Cov(Wu,Wt −Ws) = E[WuWt]− E[WuWs]

= u− u = 0

By Gaussianity, the increment is independent of (Wu)0≤u≤s.
Remark. We have used the standard fact that if the random vectors X and Y are jointly
Gaussian and Cov(X, Y ) = 0, then it follows that X and Y are independent.

Theorem. Let (Wt)t≥0 be a Brownian motion. Then each of the following processes are also

Brownian motions.

1. W̃t = cWt/c2, for any constant c ̸= 0.

2. W̃t = Wt+T −WT for any constant T ≥ 0.

3. W̃0 = 0 and W̃t = tW1/t for t > 0.

Proof. Check that each process is a continuous mean-zero Gaussian process with the correct
covariance. [For 3, we technically need the Brownian law of large number Ws

s
→ 0 as s → ∞

to prove continuity of W̃ at t = 0.]

4



Stochastic Financial Models 21

Michael Tehranchi

November 23, 2022

1 Properties of Brownian motion

Theorem (Wiener 1923). Brownian motion exists.

Remark. A Brownian motion is called a Wiener process in the US.

Theorem. Brownian motion is a martingale in its filtration Ft = σ(Ws : 0 ≤ s ≤ t).

Proof. Brownian motion is integrable, adapted and

E[Wt −Ws|Fs] = E[Wt −Ws] = 0

for 0 ≤ s ≤ t by the independence of Wt −Ws and Fs.

Theorem. Brownian motion is a Markov process.

Proof. Since Ws is Fs measurable and Wt −Ws is independent of Fs for 0 ≤ s ≤ t, we have

E[g(Wt)|Fs] = E[g(Wt −Ws +Ws)|Fs]

= E[g(Wt −Ws + x)]
∣

∣

x=Ws

= E[g(Wt)|Ws]

Definition. A process (Xt)t≥0 is Gaussian iff the random variables Xt1 , . . . , Xtn are jointly
normal for all 0 ≤ t1 ≤ . . . ≤ tn, i.e. the random variable

∑n
i=1

aiXti is normally distributed
for all constants a1, . . . , an.

Theorem. The following are equivalent

1. (Wt)t≥0 is a Brownian motion

2. (Wt)t≥0 is a Gaussian process such that

❼ t 7→ Wt is continuous

1



❼ E[Wt] = 0 for all t ≥ 0

❼ E[WsWt] = s for all 0 ≤ s ≤ t

Proof. Suppose (Wt)t≥0 is a Brownian motion. Fix 0 = t0 ≤ t1 ≤ . . . ≤ tn and a1, . . . , an.
Note

n
∑

i=1

aiWti =
n

∑

i=1

bi(Wti −Wti−1
)

where bk =
∑n

i=k ai. Since Wt1 − Wt0 , . . . ,Wtn − Wtn−1
are independent normals, and the

linear combination of independent normals is normal, we have that (Wt)t≥0 is Gaussian with
E[Wt] = E[W0] = 0 and

E[WsWt] = E[W 2

s ] + E[Ws(Wt −Ws)]

= Var(Ws) + E(Ws)E(Wt −Ws)

= 0.

for 0 ≤ s ≤ t, since Ws and Wt −Ws are independent.
Conversely, suppose (Wt)t≥0 is a continuous Gaussian process such that E[Wt] = 0 and

E[WsWt] = s for all 0 ≤ s ≤ t. Then for 0 ≤ u ≤ s ≤ t we have

Cov(Wu,Wt −Ws) = E[WuWt]− E[WuWs]

= u− u = 0

By normality, the increment Wt −Ws is independent of Wu. By Gaussianity, the increment
is independent of (Wu)0≤u≤s.

Theorem. Let (Wt)t≥0 be a Brownian motion. Then each of the following processes are also

Brownian motions.

1. W̃t = cWt/c2, for any constant c ̸= 0.

2. W̃t = Wt+T −WT for any constant T ≥ 0.

3. W̃0 = 0 and W̃t = tW1/t for t > 0.

Proof. Check that each process is a continuous mean-zero Gaussian process with the correct
covariance. [For 3, we technically need the Brownian law of large number Ws

s
→ 0 as s → ∞

to prove continuity of W̃ at t = 0.]

2 Reflection principle

Theorem. Let (Wt)t≥0 be a Brownian motion, and Ta = inf{t ≥ 0 : Wt = a}. Then Ta < ∞
almost surely.

2



Proof. Consider the case a > 0. (The case a < 0 is similar.) We must show

sup
t≥0

Wt > a almost surely

By Brownian scaling, for any c > 0 and 0 < a < b, we have

P(a < sup
t≥0

Wt < b) = P(a < sup
t≥0

cWt/c2 < b)

= P(a/c < sup
s≥0

Ws < b/c) letting t/c2 =

→ 0

by sending c ↑ ∞. Since Z = supt≥0 Wt ≥ W0 = 0, we have shown that Z ∈ {0,+∞} almost
surely.

Let Ẑ = supt≥1(Wt −W1). Note Z and Ẑ have the same distribution, so Ẑ ∈ {0,+∞}
almost surely.

Note that {Ẑ = ∞} = {Z = ∞} since sup0≤t≤1 Wt is finite by the continuity of Brownian
motion. Hence

p = P(Z = 0) = P(Z = 0, Ẑ = 0)

≤ P(W1 ≤ 0, Ẑ = 0)

=
1

2
P(Ẑ = 0) =

1

2
p

so p = 0. Hence supt≥0 Wt = ∞ almost surely.

Theorem. Let (Wt)t≥0 be a Brownian motion and T a finite stopping time. The process

Wt+T −WT is also a Brownian motion independent of (Wt)0≤t≤T

Proof. Omitted. The idea is Brownian motion is a strong Markov process.

Applying this with the finite stopping time Ta together with the symmetry of Brownian
motion, we have

Theorem (Reflection principle). Let (Wt)t≥0 be a Brownian motion and let

W̃t =

{

Wt if 0 ≤ t < Ta

2a−Wt if t ≥ Ta

Then (W̃t)t≥0 is a Brownian motion.

3

as Z = 0 implies W_t <= 0 for all t

s



Reflection principle: Key formula

P(max
0≤s≤t

Ws ≥ a,Wt ≤ b) = P(Wt ≥ 2a− b) for a ≥ 0, b ≤ a

Proof. We have

P(max
0≤s≤t

Ws ≥ a,Wt ≤ b) = P(W̃t ≥ 2a− b)

= P(Wt ≥ 2a− b)

4
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1 Cameron–Martin theorem

Motivation. Example sheet 1

❼ Let Z ∼ N(0, 1).

❼ E[g(a+ Z)] = E[eaZ−a2/2g(Z)] for any a ∈ R and suitable g.

❼ Proof: Change of variables formula for integration.

Generalisation

❼ Let Z ∼ Nn(0, I) multi-variate normal.

❼ E[g(a+ Z)] = E[ea
⊤Z−∥a∥2/2g(Z)] for any a ∈ Rn and suitable g.

❼ Essentially the same proof.

Theorem (Cameron–Martin theorem). Let (Wt)t≥0 be a Brownian motion. For fixed t ≥ 0
and c ∈ R we have

E[g((Ws + cs)0≤s≤t)] = E[ecWt−c2t/2g((Ws)0≤s≤t)]

for suitable functions g from the space of continuous functions on [0, t] to the real line.

Sketch of proof. By measure theory, it is enough to consider functions g of the form

g(w) = G(w(t1), . . . , w(tn))

for a function G on Rn, where 0 = t0 < t1 < · · · < tn = t.

E[g((Ws + cs)0≤s≤t) = E[G(Wt1 + ct1, . . . ,Wtn + ctn)]

= E[G((
k

∑

i=1

√

ti − ti−1(Zi + ai))
n
k=1)]]

= E[ea
⊤Z−∥a∥2/2G((

k
∑

i=1

√

ti − ti−1Zi)
n
k=1)]]

= E[ecWt−c2t/2g((Ws)0≤s≤t)]

1



where Zi =
Wti

−Wti−1√
ti−ti−1

are iid N(0, 1) for 1 ≤ i ≤ n and ai = c
√
ti − ti−1 so that

a⊤Z =
n

∑

i=1

aiZi = Wt

and

∥a∥2 =
n

∑

i=1

a2i = c2t

2 An application of Cameron–Martin

Proposition. Let (Wt)t≥0 be a Brownian motion. For a ≥ 0 we have

P(max
0≤s≤t

(Ws + cs) ≤ a) = P(Wt ≤ a− ct)− e2caP(Wt ≥ a+ ct)

= Φ

(

a− ct√
t

)

− e2caΦ

(−a− ct√
t

)

Proof.

P(max
0≤s≤t

(Ws + cs) ≤ a) =E[✶{max0≤s≤t(Ws+cs)≤a}]

=E[ecWt−c2t/2
✶{max0≤s≤t Ws≤a}]

=E[ecWt−c2t/2
✶{Wt≤a}]

− E[ec(2a−Wt)−c2t/2
✶{Wt≥a}]

=E[✶{Wt+ct≤a}]− e2acE[✶{Wt−ct≥a}]

To discuss risk-neutral measures, we need

Theorem (Cameron–Martin reformulation). Let (Wt)t≥0 be a Brownian motion under a

given measure P. Fix T > 0 and c ∈ R, and define an equivalent measure Q by

dQ

dP
= ecWT−c2T/2

Then the process (Wt − ct)0≤t≤T is a Brownian motion under Q.

Proof. Fix a function g on C[0, T ]. Then

EQ[g((Wt − ct)0≤t≤T )] = EP[ecWT−c2T/2g((Wt − ct)0≤t≤T )]

= EP[g((Wt)0≤t≤T )]

by the first formulation of Cameron–Martin. So the process (Wt− ct)0≤t≤T has the same law
under Q as the process (Wt)0≤t≤T has under P.

2



3 Heat equation

Proposition. Fix a suitable g and let

u(t, x) = E[f(x+
√
τZ)]

where Z ∼ N(0, 1). Then u solves the heat equation

∂τu =
1

2
∂xxu

with boundary condition u(0, x) = f(x).

Proof when g is well-behaved by example sheet 1,

∂τu =
1

2
√
τ
E[Zg′(x+

√
τZ)]

=
1

2
E[g′′(x+

√
tZ)]

=
1

2
∂xxu

If g is less well-behaved, then write

u(τ, x) =

∫

f(y)p(τ ; x, y)dy

where

p(τ ; x, y) =
1√
2πτ

exp

(

−(y − x)2

2τ

)

is the transition density of the Brownian motion (also called the heat kernel or Green’s

function ) and use the fact that p(·; ·, y) satisfies the heat equation.
Since p is very well-behaved, interchange of derivatives and integrals is allowed by the

dominated convergence theorem, provided that f has exponential growth.
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1 Black–Scholes model

❼ A risk-free asset with constant (instantaneously compounded) interest rate r.

❼ A risky stock with time t price (St)t≥0 where

St = S0e
µt+σWt

and (Wt)t≥0 is a Brownian motion.

A risk neutral measure in this context is an equivalent measure Q under which the
discounted stock price (e−rtSt)t≥0 process is a martingale.

Theorem (Risk-neutrality in Black–Scholes). Over any horizon T ≥ 0, there is a risk-

neutral measure Q with density
dQ

dP
= ecWT−c2T/2

where c = r−µ
σ

− σ
2
.

Proof. By Cameron–Martin, the process Ŵt = Wt−ct is a Brownian motion under Q. Notice
that

e−rtSt = S0e
(µ−r)t+σWt

= S0e
(µ−r+cσ)t+σŴt

= S0e
−σ2t/2+σŴt

is a martingale under Q by example sheet 4.

Black–Scholes pricing

Definition. Consider a European contingent claim with time T payout Y . Within the
Black–Scholes model, the time t price is

πt = e−r(T−t)EQ(Y |Ft)

where Q is the risk-neutral measure.

1



Note (e−rtπt)0≤t≤T is a Q-martingale.
For a vanilla European contingent claim with payout Y = g(ST ) the price is

πt = e−r(T−t)EQ(g(ST )|Ft)

= e−r(T−t)EQ[g(Ste
(r−σ2/2)(T−t)+σ(ŴT−Ŵt)|Ft]

= V (t, St)

where
V (t, s) = e−r(T−t)E[g(s e(r−σ2/2)(T−t)+σ

√
T−tZ)]

and Z ∼ N(0, 1).

2 Black–Scholes formula

The Black–Scholes price of a European call

πt = e−r(T−t)EQ[(ST −K)+|Ft]

= StΦ(d1)−Ke−r(T−t)Φ(d2)

where

d1 = − log(K/St)

σ
√
T − t

+
( r

σ
+

σ

2

)√
T − t

and

d2 = − log(K/St)

σ
√
T − t

+
( r

σ
− σ

2

)√
T − t

Derivation: Let δ = T − t and ξ = e(r−σ2/2)δ+σ
√
δZ where Z ∼ N(0, 1).

V (t, s) = e−rδE[(sξ −K)+]

= e−rδE[(sξ −K)✶{ξ>K/s}]

= sE(e−rδξ✶{ξ>K/s})−−e−rδKP(ξ > K/s)

Note that P(ξ > K/s) = 1−Φ(−d2) = Φ(d2). By the change of variables formula for normal
random variables (see example sheet 1), the law of ξ under P̂ is the same as the law of eσ

2δξ

under P, where dP̂
dP

= e−rδξ. Hence

E(e−rδξ✶{ξ>K/s}) = P(ξ > Ke−σ2δ/s) = 1− Φ(−d2 − σ
√
δ) = Φ(d1)

We can also calculate prices of European puts. Recall the payout is of the form Y =
(K = ST )

+. But by the identity

(K − ST )
+ − (ST −K)+ = K − ST

2



we see that the portfolio long one put and short one call of the same maturity T and strike
K has the same payout as long K units of cash and short one share. Therefore, letting Pt

and Ct be the time-t prices of the put and call, respectively, we have the put-call parirty

formula

Pt − Ct = Ke−r(T−t) − St

(This formula holds for all models as long as the interest rate is constant. However, in
discrete time, the discount factor e−(T−t)t is replaced by (1 + r)−(N−n). )

We can now apply this to the Black–Scholes model to calculate the price of a European
put

Pt = Ct +Ke−r(T−t) − St

= StΦ(d1)−Ke−r(T−t)Φ(d2)Ke−r(T−t) − St

= Ke−r(T−t)Φ(−d2)− StΦ(−d1)

using the identity Φ(x) = 1− Φ(−x).
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1 Black–Scholes PDE

Recall that the in the Black–Scholes model, the time-t price of a vanilla claim with time-T
payout g(ST ) is πt = V (t, St) where

V (t, s) = e−r(T−t)EQ[g(se(r−σ2/2)(T−t)+σ
√
T−tZ)]

The Black–Scholes pricing function V solves the Black–Scholes PDE

∂tV + rs∂sV +
1

2
σ2s2∂ssV = rV

with boundary condition V (T, s) = g(s).
One way to see this is to change variables and related V to a heat equation as described

in Lecture 22. See example sheet 4.
Another derivation is to approximate the Black–Scholes model by a binomial model. Note

that St = St−δξt,δ where

ξt,δ = e(r−σ2/2)δ+σ(Wt−Wt−δ)

where W is a Brownian motion in the risk-neutral measure Q. Approximating the Brownian
motion by a random walk, we approximate ξt,δ by a random variable taking two values, 1+a
with probability q and 1 + a with probability 1− q. Note

bq + a(1− q) ≈ E(ξt,δ − 1) = erδ − 1 ≈ rδ

and
b2q + a2(1− q) ≈ E[(ξt,δ − 1)2] = e(2r+σ2)δ − 2erδ + 1 ≈ σ2δ

Now, in the binomial model we have

(1 + rδ)V (t− δ, s) = q V (t, s(1 + b)) + (1− q)V (t, s(1 + a))

By Taylor expanding, the left-hand side is approximately

V + δ (rV − ∂tV )

1



where the functions are evaluated at the point (t, s). Similarly, the right-hand side is ap-
proximately,

q

(

V + sb∂sV +
1

2
s2b2∂ssV

)

+ (1− q)

(

V + sa∂sV +
1

2
s2a2∂ssV

)

= V + δ

(

sr∂sV +
1

2
s2σ2∂ssV

)

Equating the two sides and sending δ → 0 completes this (not rigorous) derivation.

2 Black–Scholes greeks

In the binomial model, in order to replicate the claim, at time t on the event {St−δ = s} you
must hold

V (t, s(1 + b))− V (t, s(1 + a))

s(b− a)
≈

∂V

∂s
(t, s)

shares of the underlying asset between times t − δ and t. In the Black–Scholes model, the
quantity ∂s∂V is called the delta of the claim. The phrase to delta-hedge a claim just means
to hold the delta (the partial derivative of the claim price with respect to the underlying
asset price) in order to replicate the payout of the claim.

The quantity ∂ssV measures the sensitivity of the delta with respect to movements of the
underlying asset price and is known as the gamma of the claim.

The quantity −∂tV is known as the theta of the claim.
The partial derivatives of the Black–Scholes pricing function with respect to the various

parameters are called the greeks of the claim. (There is a whole zoo of other greeks, including
the rho, the vega and the vanna...)

Proposition. If the payout function g is increasing, then the delta is always non-negative.

If g is convex, then the gamma is always non-negative.

Proof. From the formula

V (t, s) = e−r(T−t)EQ[g(se(r−σ2/2)(T−t)+σ
√
T−tZ)]

it is clear (using the argument from example sheet 1) that V (t, ·) is increasing when g is
increasing, and that V (t, ·) is convex when g is convex.

3 Black–Scholes prices of barrier-type claims

Consider a market with a stock with price (St)t≥0.

❼ Given a European contingent claim with payout Y and expiry T

❼ and given a level B

2



❼ A down-and-in version of the claim has payout Y ✶{min0≤t≤T St≤B}

❼ down-and-out has payout Y ✶{min0≤t≤T St>B}

❼ up-and-in has payout Y ✶{max0≤t≤T St≥B}

❼ up-and-out has payout Y ✶{max0≤t≤T St<B}

Example. An up-and-in call option with strike K and barrier B, gives the owner of the
option the right, but not the obligation, to buy the stock at time T for price K, provided
that the price of the stock exceeds B at some time between time 0 and time T .

Proposition. Within the Black–Scholes model, the initial price of an up-and-out claim with

payout

g(ST )✶{max0≤t≤T St<B}

is the same as that of a vanilla option with payout

g(ST )✶{ST≤B} − (B/S0)
2r/σ2−1g(B2ST/S

2
0)✶{ST≤S2

0
/B}

Proof. Since {max0≤t≤T St < B} ⊆ {ST < B}, we have

g(ST )✶{max0≤t≤T St<B} =g(ST )✶{ST<B}

− g(ST )✶{max0≤t≤T St≥B,ST<B}

Looking at the second term on the right, letting b = log(B/S0)/σ and c = r/σ − σ/2.

g(ST )✶{max0≤t≤T St≥B,ST≤B}

= g(S0e
σ(WT+cT ))✶{max0≤t≤T (Wt+ct)≥b,WT+cT≤b}

where (Wt)0≤t≤T is a Brownian motion under the risk-neutral measure.
By the Cameron–Martin theorem, the expected value is

E[ecWT−c2T/2g(S0e
σWT )✶{max0≤t≤T Wt≥b,WT≤b}]

by the reflection principle

= E[ec(2b−WT )−c2T/2g(S0e
σ(2b−WT ))✶{WT≥b}]

by symmetry of WT

= e2bcE[ecWT−c2T/2g(S0e
2bσeσWT )✶{WT≤−b}]

by Cameron–Martin again

= e2bcE[g(S0e
2bσeσ(WT+cT ))✶{WT+cT≤−b}]

Rewriting

e2bcE[g(e2bσST )✶{ST≤S0e−bσ}]

= (B/S0)
2r/σ2−1E[g(B2ST/S

2
0)✶{ST≤S2

0
/B}]
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